
IBM Surveillance Insight for Financial
Services
Version 2.0.2

IBM Surveillance Insight for Financial
Services Solution Guide

IBM

Note

Before using this information and the product it supports, read the information in “Notices” on page
117.

Product Information

This document applies to Version 2.0.2 and may also apply to subsequent releases.

Copyright

Licensed Materials - Property of IBM
© Copyright IBM Corp. 2017.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

IBM, the IBM logo and ibm.com are trademarks or registered trademarks of International Business Machines Corp.,
registered in many jurisdictions worldwide. Other product and service names might be trademarks of IBM or other
companies. A current list of IBM trademarks is available on the Web at " Copyright and trademark information " at
www.ibm.com/legal/copytrade.shtml.
© Copyright International Business Machines Corporation 2016, 2017.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

http://www.ibm.com/legal/copytrade.shtml

Contents

Introduction.. v

Chapter 1. IBM Surveillance Insight for Financial Services......................................1
The solution architecture...2
Deploy the IBM Surveillance Insight for Financial Services software..3

Chapter 2. Surveillance Insight Workbench..5
Dashboard page... 5
Alert Details page...6
Employee Details page.. 8
Notes page... 9
Search pages..12
Voice evidence page.. 14

Chapter 3. Trade surveillance...15
Trade Surveillance Toolkit... 15

Ticker price schema... 20
Execution schema.. 20
Order schema... 22
Quote schema.. 24
Trade schema... 25
End of day (EOD) schema...26
Market reference schema.. 27
Transaction schema... 27
Risk event schema..27
Trade evidence schema... 27
Event schema... 27
Event data schema... 28

Pump-and-dump use case.. 28
Spoofing detection use case..29
Off-market use case.. 31
Front running use case.. 32
Extending Trade Surveillance.. 34

Chapter 4. E-Comm surveillance.. 37
E-Comm data ingestion... 38
E-Comm feature extraction... 39
Communication schema.. 40
E-Comm risk scoring..41
E-Comm Spark job configration...43
End-to-end flow for e-comm processing.. 46

Chapter 5. Voice surveillance... 49
Voice Ingestion service..49
Voice data services.. 51
Voice Surveillance Toolkit metadata schema... 54
WAV adaptor processing..55
PCAP format processing.. 56

Chapter 6. Surveillance Insight data schemas.. 59

 iii

Party view...60
Communication view... 61
Alert view... 64
Trade view.. 66

Chapter 7. NLP libraries... 69
Emotion Detection library..69
Concept Mapper library... 71
Classifier library... 74

Chapter 8. Inference engine...79
Inference engine risk model..79
Run the inference engine...80

Chapter 9. Indexing and searching... 85

Chapter 10. Conduct Surveillance.. 87
Raw data schema and ingestion..87
Analysis pipeline.. 87

Create an analysis pipeline.. 88
Trend analysis.. 91
Complaints dashboard...99

Complaints data model..102
Complaint features...102
Solr data model for complaints... 103

Chapter 11. Health Check User Interface..105
Health Check tabs..105
Date ranges..105
Health Check dashboards... 106

Ecomm dashboards... 106
Voice dashboards...108

Chapter 12. Troubleshooting.. 113
CDISI5060E No default Java found.. 113
CDISI3059W You may be running a firewall which may prevent communication between the

cluster hosts... 113
CDISI5070E The perl-XML-Simple software dependency is not installed.. 113

Appendix A. Accessibility features... 115

Notices..117
Index.. 119

iv

Introduction

Use IBM® Surveillance Insight® for Financial Services to proactively detect, profile, and prioritize non-
compliant behavior in financial organizations. The solution ingests unstructured and structured data, such
as trade, electronic communication, and voice data, to flag risky behavior. Surveillance Insights helps you
investigate sophisticated misconduct faster by prioritizing alerts and reducing false positives, and reduces
the cost of misconduct.

Some of the key problems that financial firms face in terms of compliance misconduct include:

• Fraudsters using sophisticated techniques thereby making it hard to detect misconduct.
• Monitoring and profiling are hard to do proactively and efficiently with constantly changing regulatory

compliance norms.
• A high rate of false positives increases the operational costs of alert management and investigations.
• Siloed solutions make fraud identification difficult and delayed.

IBM Surveillance Insight for Financial Services addresses these problems by:

• Leveraging key innovative technologies, such as behavior analysis and machine learning, to proactively
identify abnormalities and potential misconduct without pre-defined rules.

• Using evidence-based reasoning that aids streamlined investigations.
• Using risk-based alerting that reduces false positives and negatives and improves the efficiency of

investigations.
• Combining structured and unstructured data from different siloed systems into a single platform to

perform analytics.

IBM Surveillance Insight for Financial Services takes a holistic approach to risk detection and reporting. It
combines structured data such as stock market data (trade data) with unstructured data such as
electronic emails and voice data, and it uses this data to perform behavior analysis and anomaly detection
by using machine learning and natural language processing.

Figure 1: Surveillance Insight overview

© Copyright IBM Corp. 2016, 2017 v

Audience

This guide is intended for administrators and users of the IBM Surveillance Insight for Financial Services
solution. It provides information on installation and configuration of the solution, and information about
using the solution.

Finding information and getting help

To find product documentation on the web, access IBM Knowledge Center (www.ibm.com/support/
knowledgecenter/SSWTQQ).

Accessibility features

Accessibility features help users who have a physical disability, such as restricted mobility or limited
vision, to use information technology products. Some of the components included in the IBM Surveillance
Insight for Financial Services have accessibility features. For more information, see Appendix A,
“Accessibility features,” on page 115.

The HTML documentation has accessibility features. PDF documents are supplemental and, as such,
include no added accessibility features.

Forward-looking statements

This documentation describes the current functionality of the product. References to items that are not
currently available may be included. No implication of any future availability should be inferred. Any such
references are not a commitment, promise, or legal obligation to deliver any material, code, or
functionality. The development, release, and timing of features or functionality remain at the sole
discretion of IBM.

Samples disclaimer

Sample files may contain fictional data manually or machine generated, factual data that is compiled from
academic or public sources, or data that is used with permission of the copyright holder, for use as sample
data to develop sample applications. Product names that are referenced may be the trademarks of their
respective owners. Unauthorized duplication is prohibited.

vi IBM Surveillance Insight for Financial Services Version 2.0.2 : IBM Surveillance Insight for Financial Services
Solution Guide

http://www.ibm.com/support/knowledgecenter/SSWTQQ_2.0.2

Chapter 1. IBM Surveillance Insight for Financial
Services

IBM Surveillance Insight for Financial Services provides you with the capabilities to meet regulatory
obligations by proactively monitoring vast volumes of data for incriminating evidence of rogue trading or
other wrong-doing through a cognitive and holistic solution for monitoring all trading-related activities.
The solution improves current surveillance process results and delivers greater efficiency and accuracy to
bring the power of cognitive analysis to the financial services industry.

The following diagram shows the high-level IBM Surveillance Insight for Financial Services process.

Figure 2: High-level process

1. As a first step in the process, data from electronic communications (such as email and chat), voice
data, and structured stock market data are ingested into IBM Surveillance Insight for Financial
Services for analysis.

2. The data is analyzed.
3. The results of the analysis are risk indicators with specific scores.
4. The evidences and their scores are used by the inference engine to generate a consolidated score. This

score indicates whether an alert needs to be created for the current set of risk evidences. If needed,
an alert is generated and associated with the related parties and stock market tickers.

5. The alerts and the related evidences that are collected as part of the analysis can be viewed in the IBM
Surveillance Insight for Financial Services Workbench.

After the alerts are created and the evidences are collected, the remaining steps in the process are
completed outside of IBM Surveillance Insight for Financial Services. For example, case investigators
must work on the alerts and confirm or reject them, and then investigation reports must be sent out to the
regulatory bodies as is required by compliance norms.

© Copyright IBM Corp. 2016, 2017 1

The solution architecture
IBM Surveillance Insight for Financial Services is a layered architecture is made up of several
components.

The following diagram shows the different layers that make up the product:

REST Services

Hadoop

REST Services

Spark SQL

Hadoop

REST Services

SQL Interface

IBM DB2

Data / Service layerMarket / Customer data

Quote

Trade

Order

Execution

Voice

Email

Chat

E-Comm data

Trade data

Analytics layer

Pump and dump

Spoofing

Insider trading

Use case layer
Surveillance Insight
Workbench

User management

Configuration

REST Services

node.js

Moving averages

Surveillance
Toolkit
(Base Analytics)

Bulk order
detection

Unusual activity
detection

Unusual price
movement

Common schema

Alert management

Industry dictionaries

Reasoning engine

Surveillance
library

Policy engine Index / Search
Apache Solr

Streaming

Structured analytics

Apache Spark

Speech 2 Text

Natural language
processing

Watson cloud

ONLINE

OFFLINE

Kafka

SFTP / TCP stream based adaptor

Data ingestion
Kafka

Messaging platform

Figure 3: Product layers

• The data layer shows the various types of structured and unstructured data that is consumed by the
product.

• The data ingestion layer contains the FTP/TCP-based adaptor that is used to load data into Hadoop. The
Kafka messaging system is used for loading e-communications into the system.

Note: IBM Surveillance Insight for Financial Services does not provide the adaptors with the product.
• The analytics layer contains the following components:

– The Workbench components and the supporting REST services for the user interfaces.
– Specific use case implementations that leverage the base toolkit operators.
– The surveillance library that contains the common components that provide core platform

capabilities such as alert management, reasoning, and the policy engine.
– The Spark Streaming API is used by Spark jobs as part of the use case implementations.
– Speech 2 Text and the NLP APIs are used in voice surveillance and eComms surveillance.
– Solr is used to index content to enable search capabilities in the Workbench.

• Kafka is used as an integration component in the use case implementations and to enable
asynchronous communication between the Streams jobs and the Spark jobs.

• The data layer primarily consists of data in Hadoop and IBM DB2®. The day-to-day market data is stored
in Hadoop. It is accessed by using the spark-sql or spark-graphx APIs. Data in DB2 is accessed by using
traditional relational SQL. REST Services are provided for data that needs to be accessed by the user
interfaces and for certain operations such as alert management.

2 IBM Surveillance Insight for Financial Services Version 2.0.2 : IBM Surveillance Insight for Financial Services
Solution Guide

• The output, or the risk evidences from the use case implementations (trade, e-comm, and voice), are
dropped into the Kafka messaging topics for the use case-specific Spark jobs. The Spark jobs perform
the post processing after the evidences are received from the Streams jobs.

Deploy the IBM Surveillance Insight for Financial Services software
IBM Surveillance Insight for Financial Services is deployed on different node computers that host
different parts of the solution. Some prerequisite components are required on each of the nodes.

The following diagram provides a high-level overview of the solution architecture.

Figure 4: Deployment topology

There is a separate installer for each of the components that comprise IBM Surveillance Insight for
Financial Services.

• IBM Surveillance Insight for Financial Services
• IBM Trade Surveillance Analytics
• IBM Electronic Communication Surveillance Analytics
• IBM Voice Surveillance Analytics
• IBM Complaints Analytics

The IBM Surveillance Insight for Financial Services base component also requires the following parts:

• IBM Surveillance Insight for Fin Serv DB2AWSE (1 of 8) 2.0.2 CentOS EN - CNPY7EN
• IBM Surveillance Insight for Fin Serv Liberty (2 of 8) 2.0.2 CentOS EN - CNPY8EN
• IBM Surveillance Insight for Fin Serv Kafka (3 of 8) 2.0.2 CentOS EN - CNPY9EN
• IBM Surveillance Insight for Fin Serv Solr (4 of 8) 2.0.2 CentOS EN - CNPZ0EN
• IBM Surveillance Insight for Fin Serv Kibana (5 of 8) 2.0.2 CentOS EN - CNPZ1EN
• IBM Surveillance Insight for Fin Serv Logstash (6 of 8) 2.0.2 CentOS EN - CNPZ2EN
• IBM Surveillance Insight for Fin Serv Elasticsearch (7 of 8) 2.0.2 CentOS EN - CNPZ3EN
• IBM Surveillance Insight for Fin Serv Filebeat (8 of 8) 2.0.2 CentOS EN - CNPZ4EN

IBM Surveillance Insight for Financial Services 3

4 IBM Surveillance Insight for Financial Services Version 2.0.2 : IBM Surveillance Insight for Financial Services
Solution Guide

Chapter 2. Surveillance Insight Workbench
Users access the product through the Surveillance Insight Workbench, a web-based interface that
provides users with the results of the analysis that is performed by the solution.

You access the Surveillance Insight Workbench by entering the following URL in your web browser:

https://hostname:port/surveillance/dashboard/index.html

You must enter your log in credentials.

Dashboard page
The Dashboard page shows the Alerts and Employees tabs.

Alerts tab

The Alert tab shows open alerts that were created in the past 30 days from the date that the last alert
was created. The results are sorted by risk score.

Figure 5: Alert tab

Employees tab

The Employees tab displays the top 50 employees sorted by their risk score. Only employees with a
positive risk score value are displayed. The risk score of an employee is based on their past and currently
active alerts. If an employee does not have any alerts in the past 90 days and does not have any currently
active alerts, they will not appear in this list.

Figure 6: Employees tab

© Copyright IBM Corp. 2016, 2017 5

Alert Details page
The Alert Details page shows the basic information about the alert in the header region of the page, and
then more information on the tabs of the page.

Overview tab

The Overview tab shows the reasoning graph and the associated evidences that created the alert. You
can change the start and end dates of the reasoning graph can be changed to show the change in the
reasoning over time.

Figure 7: Alert Overview tab

Alert Network tab

The Network tab shows the network of communications that were analyzed from the electronic
communications. The nodes on the network chart are entities such as a person, an organization, or a
ticker. The links between the nodes represent a communication between the entities. You can click the
link to show the email that were proof of the communication.

Figure 8: Alert Network tab

6 IBM Surveillance Insight for Financial Services Version 2.0.2 : IBM Surveillance Insight for Financial Services
Solution Guide

Involved Employees tab

The Involved Employees tab displays a list of employees that are involved in an alert. You can click an
employee to display information about that employee, such as personal information, history, anomalies,
and emotion analysis.

The personal information shows the location details, contact information, supervisor details, an alert
summary, and a risk score for the employee. The risk score is the overall risk score that is associated with
the employee based on their current and past alerts. It is not the risk score that is associated with a
specific alert.

Figure 9: Personal Information

The History tab shows the history of current and past alerts for the employee.

Figure 10: History

The Anomalies tab shows the behavior anomalies of the selected employee. Each anomaly has a risk
score and a date that is associated with it. These factors determine the position of the circle in the chart.
The color of the chart represents the type of anomaly. The data that is used to plot the chart is determined
by the start and end dates of the alert.

Surveillance Insight Workbench 7

Figure 11: Anomalies tab

The Emotion Analysis tab shows the emotional behavior that is portrayed by an employee based on their
communications. The chart displays a circle for each instance where the employee's emotion score
crosses a threshold. You can click the circle to display a list of communication evidences that contain that
specific emotion. The data that is used to plot the chart is determined by the start and end dates of the
alert.

Figure 12: Emotion Analysis tab

Employee Details page
The Employee Details page shows the same information as the Involved Employees section of the Alert
page.

The only difference is that the anomalies chart and the emotional analysis chart use the last 10 days of
available data in the database. Whereas, the start and end dates of the alert are used in the Alert page.

For more information about the content, see the “Involved Employees tab” on page 7.

8 IBM Surveillance Insight for Financial Services Version 2.0.2 : IBM Surveillance Insight for Financial Services
Solution Guide

Notes page
Alert investigators can add notes and attach files to an alert from the Notes page. You can view the Notes
page from any of the pages in the Alert Details view.

View notes

Click the note icon to view the notes for an alert.

Figure 13: View notes

Surveillance Insight Workbench 9

Figure 14: Displaying notes

Create notes

From Figure 14 on page 10 page, click Notes to add a note. You can also click Screenshot to add a screen
capture of the current screen.

10 IBM Surveillance Insight for Financial Services Version 2.0.2 : IBM Surveillance Insight for Financial Services
Solution Guide

Figure 15: Create notes

Update notes

You can click Edit to change or update a note.

Delete notes

To delete a note, click Go to Note Summary, and delete the note.

Notes summaries

You can save a notes summary to a PDF file. To generate a summary, click Go to Note Summary, and click
Generate PDF.

Note actions

The alert investigator can agree or disagree with the notes on the Note Summary page. This updates the
status of the note in the system.

Surveillance Insight Workbench 11

Figure 16: Note Summary page

Search pages
You can search for alerts, employees, and communication types.

Alert Search

You can search for an alert by different criteria, such as by date, alert type, employee, ticker, and status.
After you select your criteria, click Apply to display the results.

Figure 17: Alert Search page

Employee Search

You can search for an employee by their name, ID, location, or role.

12 IBM Surveillance Insight for Financial Services Version 2.0.2 : IBM Surveillance Insight for Financial Services
Solution Guide

Figure 18: Employee Search page

Communication Search

The Communication Search allows you to search by communication type, by the people involved in the
communication, by the entities, and by the emotions detected in the communication.

Figure 19: Communication Search page

Search capabilities

Select Voice as the channel value on the Communication Search page to display all of the existing voice
communications. You can filter the voice communications by properties such as "Login Name", "Phone",
"Extension", "Device Id".

You can also search the existing voice communications by using Advance Query. Advance Query allows
you to use both free-form text searches or Solr query style searches. For example, a search that contains
"ABCC" returns all voice communications that contain the text "ABCC".

Surveillance Insight Workbench 13

Voice evidence page
The Voice Evidence page lets you view the metadata and transcript of the voice data.

Figure 20: Voice Evidence page

User can add annotations against selected text from the transcript, and they can add an existing Evidence
Type to a communication.

Users should be part of the Compliance Officer group to be able to edit a communication.

1. Click the Edit button for a voice communication to make its transcript editable.
2. Select a section of text and click the annotation button. After you add the annotation, the text is

highlighted in the color of the annotation.
3. Select an existing evidence, such as Anger, from the menu. You can also slide the risk probability bar to

set a value between 0 and 1. Click Select to associate the evidence type to the communication. This
enables users to manually create risk evidences.

4. To remove an existing annotation, select the text (the text should already be annotated) and click
Remove Annotation.

5. Click Finish Editing after you have made all of your changes.

By default, there are 3 supported annotations: People, Organization, and Ticker. Users can update the
ENTITY_TYPE_MASTER table in the database to add new entities and specify a color code. The newly
added entities are also displayed as annotations, which allows users to use the new entities to annotate
existing communications.

You can annotate only a single line of text at a time. You cannot select multiple lines and add an
annotation.

Only on user can be editing a communication at any time. After you click Finish Editing, another user will
be able to annotate the communication.

Bulk export for voice communications

Select one or more existing voice communications and click Export. You can export data by using one of 4
options: All, Audio, Transcript, or Metadata.

• All exports the voice metadata, transcript, and the audio file
• Audio exports the metadata and the audio file
• Transcript exports the metadata and the transcript
• Metadata exports the metadata

The data is exported in tar.gz format. The file is exported to the location that is identified in the JNDI
variable, VOICE_BULK_EXPORT_ARCHIVE_FILE_DESTINATION, on the server.

14 IBM Surveillance Insight for Financial Services Version 2.0.2 : IBM Surveillance Insight for Financial Services
Solution Guide

Chapter 3. Trade surveillance
IBM Surveillance Insight for Financial Services trade surveillance offers mid and back-office surveillance
on market activities and communication to detect and report possible market abuse activity.

The trade component monitors trade data, detects suspicious patterns against the predefined risk
indicators, and reports the patterns. The trade data includes order data, trade data, quotes, executions,
and end of the day summary data. Also included are the transactions and market reference data from the
equity market.

The risk indicators are analyzed by the inference engine. The inference engine uses a risk model to
determine whether an alert needs to be created.

Two use cases are provided:

• Pump-and-dump
• Spoofing
• Off-market (equity market)

The following trade-related risk indicators are available in the Surveillance Insight for Financial Services
master data:

• Bulk orders
• High order-to-order cancel ratio
• Bulk executions
• Unusual quote price movement
• Pump in the stock
• Dump in the stock
• Deal rate anomaly (equity market)
• Party past alerts

Data ingestion

Market data, such as trade, order, quote, and execution data, are uploaded to the Hadoop file system
(HDFS) by using the HDFS terminal. The naming conventions for the files and folder are as follows:

• /user/sifsuser/trade/Trade_<yyyy-mm-dd>.csv
• /user/sifsuser/order/Order_<yyyy-mm-dd>.csv
• /user/sifsuser/execution/Execution_<yyyy-mm-dd>.csv
• /user/sifsuser/quote/Quote_<yyyy-mm-dd>.csv
• /user/sifsuser/EOD/EOD_<yyyy-mm-dd>.csv
• /user/sifsuser/transactions/transactions_<yyyy-mm-dd>.csv
• /user/sifsuser/marketReference/marketReference_<yyyy-mm-dd>.csv

The current implementation of the trade use cases expects that there is one file of each type for each day.

The IBM InfoSphere® Streams data loader job monitors the folders. The job reads any new file that is
dropped into the folder and sends it for downstream processing.

Trade Surveillance Toolkit
The Trade Surveillance Toolkit helps the solution developers to focus on specific use case development.

The toolkit contains basic data types, commonly used functional operators relevant to trade analytics, and
adapters for some data sources.

© Copyright IBM Corp. 2016, 2017 15

The Surveillance Base Toolkit includes the following risk indicator operators:

• Bulk orders detection
• High order-to-order cancel ratio
• Bulk execution detection
• Unusual quote price movement
• Deal rate anomaly (equity market)

The risk evidence sink operator is also included.

The Surveillance Base Toolkit includes the following schema type definitions:

• Order
• Quote
• Execution
• Trade
• Transaction
• Market reference
• Risk event
• Trade evidence

For information about the schemas for the types that are defined in the toolkit, see Trade Toolkit data
schemas.

Note:

• The risk event and trade evidence schemas are new in this release. All new risk indicator
implementations must use these types to create events. The deal rate anomaly risk indicator provides
an example of how to use these types. The other risk indicator implementations use the event and event
data types, which are deprecated. It is not recommended to use the event and event data types.

• The risk evidence sink operator makes it easier to create risk evidences for downstream consumption. It
uses the risk event type events as input. Users of available risk indicators (other than deal rate
anomaly), must convert the event type event to the risk event type event before you can push the event
to the risk evidence sink operator.

Bulk Order Detection operator

Purpose
Looks at a sliding window of orders and checks if total order volume is over the Bulk Volume
Threshold. It is grouped by trader, ticker, and order side (buy/sell). The sliding window moves by 1
second for every slide.

Input
Order Data according to the schema.

Output event contents
Id: unique ID for this event
Event Time: time in input data, not system time

16 IBM Surveillance Insight for Financial Services Version 2.0.2 : IBM Surveillance Insight for Financial Services
Solution Guide

Event Type: BULK_ORDER
Trader ID: ID of the trader who is placing the order
Ticker
Event Data
orderQty: total volume of orders in the window for Trader ID
Side: BUY or SELL
maxOrderPrice: maximum order price that was seen in the current window

Configuration
Window Size: time in seconds for collecting data to analyze
Bulk Volume Threshold: Volume threshold that is used to trigger events

High order cancellation operator

Purpose
Looks at a sliding window of window size (in seconds) and checks if total order volume to order
cancellation volume for a trader is above the cancellation threshold. It is grouped by trader, ticker, and
order side (buy/sell).

Input
Order Data according to the schema.

Output event contents
Id: unique ID for this event
Event Time: time in input data, not system time
Event Type: HIGH_CANCEL_RATIO
Trader ID: ID of the trader who is placing the order
Ticker
Event Data
Side: BUY or SELL
Ratio: order volume versus cancellation ratio

Configuration
Window Size: time in seconds for collecting data to analyze
Window Slide: Slide value for the window in seconds
Cancellation Threshold: Volume threshold that is used to trigger events

Trade surveillance 17

Price Trend operator

Purpose
Looks at a sliding window of quotes and computes the rise or drop trend (slope) for offer and bid
prices. It fires an event if the price slope rises above the Rise Threshold or drops below the Drop
Threshold. The former indicates an unusual rise in the quotes and the latter indicates an unusual drop
in the quotes. The analysis is grouped by ticker.

Input
Quote Data according to the schema.

Output event contents
Id: unique ID for this event
Event Time: time in input data, not system time
Event Type: PRICE_TREND
Trader ID: not applicable
Ticker
Event Data
Side: BID or OFFER
Slope: slope of the bid or offer price

Configuration
Window Size: time in seconds for collecting data to analyze
Window Slide: Slide value for the window in seconds
Drop Threshold: Threshold that indicates an unusual downward trend in the quotes
Rise Threshold: Threshold that indicates an unusual rise trend in the quotes

Bulk Execution Detection operator

Purpose
Looks at a sliding window of executions and checks if the total executed volume is above the Bulk
Volume Threshold. It is grouped by trader, ticker, and order side (buy/sell). The sliding window moves
by 1 second for every slide.

Input
Execution Data according to the schema.

18 IBM Surveillance Insight for Financial Services Version 2.0.2 : IBM Surveillance Insight for Financial Services
Solution Guide

Output event contents
Id: unique ID for this event
Event Time: time in input data, not system time
Event Type: BULK_EXEC
Trader ID: ID of the trader who is placing the order
Ticker
Event Data
orderQty: total volume of executions in the window for Trader ID
Side: BUY or SELL
TotalExecValue: price * execution quantity for this window. It is grouped by ticker, trader, and side

Configuration
Window Size: time in seconds for collecting data to analyze
Bulk Volume Threshold: The volume threshold that is used to trigger events

Deal Rate Anomaly operator

Purpose
Looks at forex transaction data from the equity market and matches the deal rate against the high and
low market values as mentioned in the market reference data at the time of the transaction. If the
deal rate falls outside of the high and low range, a deal rate anomaly event is fired.

Input
Transaction data and market reference data.

Output event contents
Note: This operator outputs riskEvent type events. For more information, see “Risk event schema” on
page 27.

Id: unique ID for this event
Event Time: time in input data, not system time
Event Type: Transaction Deal Rate Anomaly
Trader ID: ID of the trader who is placing the transaction
Trade evidence data:

• dataType: transaction
• startTime: ""
• windowSize: 0.0
• id: transaction ID

Configuration
Start time: The time in the input data that corresponds to the first record in the input. This is used to
compute the one-minute window durations to read the market reference data.

Trade surveillance 19

Risk Indicator Look Up Code: This is the look-up code for Deal Rate Anomaly in the master data in the
SIFS database. This value is used to send out the risk indicator to the downstream processes for
persisting the risk evidence with the corresponding look-up code.

Risk Evidence Sink operator

Purpose
This operator abstracts the job of creating a risk evidence message, encrypting it, and the passing it on
to a Kafka topic for the downstream processes to consume. It takes risk event type as the input and
converts it into a risk evidence JSON. It then, optionally, encrypts the JSON and drops it into a pre-
configured Kafka topic.

Input
Risk event.

Configuration
configPath: The file system path where the Kafka producer properties file can be found
alertTopicName: The topic name in Kafka where the operator drops the risk evidences
producerFileName: The name of the Kafka producer properties file
encryptFileName: The name of the encryption properties file
encryptionEnabled: Toggles encryption of the risk evidence JSON before it is dropped into the Kafka
topic

Ticker price schema
symbol,datetime,price

Table 1: Ticker price schema

Field name Field type Description

Symbol String The ticker corresponding to the
trade

Datetime String The date and time at which the
trade occurred

Price Float The unit price of the stocks
traded

Execution schema
Id, Symbol, Datetime, Brokerid, Traderid, Clientid, effectiveTime, expireTime,
timeInForce, exposureDuration, tradingSession, tradingSessionSub, settlType,
settlDate, Currency, currencyFXRate, execType, trdType, matchType, Side,
orderQty, Price, exchangeCode, refQuoteId, refOrderId

For more information about the fields in this schema, refer to the FIX wiki (http://fixwiki.org/fixwiki/
ExecutionReport/FIX.5.0SP2%2B)

20 IBM Surveillance Insight for Financial Services Version 2.0.2 : IBM Surveillance Insight for Financial Services
Solution Guide

http://fixwiki.org/fixwiki/ExecutionReport/FIX.5.0SP2%2B

Table 2: Execution schema

Field name Field type Description

Id String Unique identifier for the
execution

Symbol String The ticker corresponding to the
trade

Datetime String The date and time at which the
trade occurred. The format is
yyyy-mm-dd hh:mm:ss

Brokerid String The ID of the broker that is
involved in this execution

Traderid String The ID of the trader that is
involved in this execution

Clientid String The ID of the client that is
involved in this execution

effectiveTime String The date and time stamp at
which the execution is effective

expireTime String The date and time stamp when
this execution will expire

timeInForce String Specifies how long the order
remains in effect. Absence of this
field is interpreted as DAY

exposureDuration String The time in seconds of a "Good
for Time" (GFT) TimeInForce

tradingSession String Identifier for a trading session

tradingSessionSub String Optional market assigned sub
identifier for a trading phase
within a trading session

settlType String Indicates order settlement
period. If present, SettlDate
overrides this field. If both
SettlType and SettDate are
omitted, the default for SettlType
is 0 (Regular)

settlDate String Specific date of trade settlement
(SettlementDate) in YYYYMMDD
format

Currency String The currency in which the
execution price is represented

currencyFXRate Float The foreign exchange rate that is
used to calculate SettlCurrAmt
from Currencyto SettlCurrency

Trade surveillance 21

Table 2: Execution schema (continued)

Field name Field type Description

execType String Describes the specific
ExecutionRpt (for example,
Pending Cancel) while OrdStatus
will always identify the current
order status (for example,
Partially Filled)

trdType String Type of trade

matchType String The point in the matching
process at which this trade was
matched

Side String Denotes BUY or SELL execution

orderQty Int The volume that is fulfilled by this
execution

Price Float The price per unit for this
execution

exchangeCode String

refQuoteId String The quote that corresponds to
this execution

refOrderId String Refers to the order corresponding
to this execution

Order schema
Id, Symbol, Datetime, effectiveTime, expireTime, timeInForce, exposureDuration,
settlType, settlDate, Currency, currencyFXRate, partyId, orderType, Side,
orderQty, minQuantity, matchIncr, Price, manualOrderIndicator, refOrderId,
refOrderSource

For more information about the fields in this schema, refer to the FIX wiki (http://fixwiki.org/fixwiki/
ExecutionReport/FIX.5.0SP2%2B)

Table 3: Order schema

Field name Field type Description

Id String Unique identifier for the order

Symbol String The ticker corresponding to the
trade

Datetime String The date and time at which the
order was placed. The format is
yyyy-mm-dd hh:mm:ss

effectiveTime String The date and time stamp at
which the order is effective

expireTime String The date and time stamp when
this order will expire

22 IBM Surveillance Insight for Financial Services Version 2.0.2 : IBM Surveillance Insight for Financial Services
Solution Guide

http://fixwiki.org/fixwiki/ExecutionReport/FIX.5.0SP2%2B

Table 3: Order schema (continued)

Field name Field type Description

timeInForce String Specifies how long the order
remains in effect. If this value is
not provided, DAY is used as the
default

exposureDuration String The time in seconds of a "Good
for Time" (GFT) TimeInForce

settlType String Indicates order settlement
period. If present, SettlDate
overrides this field. If both
SettlType and SettDate are
omitted, the default for SettlType
is 0 (Regular)

settlDate String Specific date of trade settlement
(SettlementDate) in YYYYMMDD
format

Currency String The currency in which the order
price is represented

currencyFXRate Float The exchange rate that is used to
calculate the SettlCurrAmt from
Currencyto SettlCurrency

partyId String The trader that is involved in this
order

orderType String CANCEL represents an order
cancellation. Used with
refOrderId.

Side String Indicates a BUY or SELL order

orderQty Int The order volume

minQuantity Int Minimum quantity of an order to
be executed

matchIncr Int Allows orders to specify a
minimum quantity that applies to
every execution (one execution
might be for multiple counter-
orders). The order can still fill
against smaller orders, but the
cumulative quantity of the
execution must be in multiples of
the MatchIncrement

Price Float The price per unit for this order

manualOrderIndicator boolean Indicates whether the order was
initially received manually (as
opposed to electronically) or if it
was entered manually (as
opposed to it being entered by
automated trading software)

Trade surveillance 23

Table 3: Order schema (continued)

Field name Field type Description

refOrderId String Used with the orderType. Refers
to the order that is being
canceled

refOrderSource String The source of the order that is
represented by a cancellation
order

Quote schema
Id, Symbol, Datetime, expireTime, exposureDuration, tradingSession,
tradingSessionSub, settlType, settlDate, Currency, currencyFXRate, partyId,
commPercentage, commType, bidPrice, offerPrice, bidSize, minBidSize,
totalBidSize, bidSpotRate, bidFwdPoints, offerSize, minOfferSize,
totalOfferSize, offerSpotRate, offerFwdPoints

For more information about the fields in this schema, refer to the FIX wiki (http://fixwiki.org/fixwiki/
ExecutionReport/FIX.5.0SP2%2B)

Table 4: Quote schema

Field name Field type Description

Id String Unique identifier for the quote

Symbol String The ticker corresponding to the
trade

Datetime String The date and time at which the
quote was placed. The format is
yyyy-mm-dd hh:mm:ss

expireTime String The date and time stamp when
this quote will expire

exposureDuration String The time in seconds of a "Good
for Time" (GFT) TimeInForce

tradingSession String Identifier for a trading session

tradingSessionSub String Optional market assigned sub
identifier for a trading phase
within a trading session

settlType String Indicates order settlement
period. If present, SettlDate
overrides this field. If both
SettlType and SettDate are
omitted, the default for SettlType
is 0 (Regular)

settlDate String Specific date of trade settlement
(SettlementDate) in YYYYMMDD
format

Currency String The currency in which the quote
price is represented

24 IBM Surveillance Insight for Financial Services Version 2.0.2 : IBM Surveillance Insight for Financial Services
Solution Guide

http://fixwiki.org/fixwiki/ExecutionReport/FIX.5.0SP2%2B

Table 4: Quote schema (continued)

Field name Field type Description

currencyFXRate Float The exchange rate that is used to
calculate SettlCurrAmt from
Currencyto SettlCurrency

partyId String The trader that is involved in this
quote

commPercentage Float Percentage of commission

commType String Specifies the basis or unit that is
used to calculate the total
commission based on the rate

bidPrice Float Unit price of the bid

offerPrice Float Unit price of the offer

bidSize Int Quantity of bid

minBidSize Int Type of trade

totalBidSize Int

bidSpotRate Float Bid F/X spot rate

bidFwdPoints Float Bid F/X forward points added to
spot rate. This can be a negative
value

offerSize Int Quantity of the offer

minOfferSize Int Specifies the minimum offer size

totalOfferSize Int

offerSpotRate Float Offer F/X spot rate

offerFwdPoints Float Offer F/X forward points added to
spot rate. This can be a negative
value

Trade schema
Id, Symbol, Datetime, Brokerid, Traderid, Clientid, Price, Volume, Side

Table 5: Trade schema

Field name Field type Description

Id String Unique identifier for the trade

Symbol String The ticker corresponding to the
trade

Datetime String The date and time at which the
trade occurred. The format is
yyyy-mm-dd hh:mm:ss

Brokerid String The id of the broker involved in
the trade

Traderid String The id of the trader involved in
the trade

Trade surveillance 25

Table 5: Trade schema (continued)

Field name Field type Description

Clientid String The id of the client involved in the
trade

Price Float The unit price of the stocks
traded

Volume Int The volume of stocks traded

Side String The BUY or SELL side of the trade

End of day (EOD) schema
Id, Symbol, Datetime, openingPrice, closingPrice, dayLowPrice, dayHighPrice,
Week52LowPrice, Week52HighPrice, marketCap, totalVolume, industryCode, div,
EPS, beta, description

Table 6: End of day (EOD) schema

Field name Field type Description

Id String Unique identifier for the trade

Symbol String The ticker corresponding to the
trade

Datetime String The date and time at which the
trade occurred. The format is
yyyy-mm-dd hh:mm:ss

openingPrice Float The opening price of the ticker for
the date that is specified in the
datetime field

closingPrice Float The closing price of the ticker for
the date that is specified in the
datetime field

dayLowPrice Float The lowest traded price for the
day for this ticker

dayHighPrice Float The highest traded price for the
day for this ticker

Week52LowPrice Float The 52-week low price for this
ticker

Week52HighPrice Float The 52-week high price for this
ticker

marketCap Float The market cap for this ticker

totalVolume Int The total outstanding volume for
this ticker as of today

industryCode String The industry to which the
organization that is represented
by the ticker corresponds to

Div Float

EPS Float

26 IBM Surveillance Insight for Financial Services Version 2.0.2 : IBM Surveillance Insight for Financial Services
Solution Guide

Table 6: End of day (EOD) schema (continued)

Field name Field type Description

Beta Float

Description String The description of the
organization that is represented
by the ticker

Market reference schema
symbol, periodDate, periodNumber, periodStart, periodEnd, open, high, low,
close, mid

Transaction schema
transactionID, linkedOrderID, tradeDate, timeExecuted, valueDate, productType,
dealerCode, portfolioCode, counterpartyCode, counterpartyName,
counterpartyLocation, channel, broker, buyCCY, sellCCY, dealRate, buyCCYAmount,
sellCCYAmount, transactionStatus, traderId, symbol

Risk event schema
rstring id, rstring description, rstring eventType, rstring startTime, float64
windowSize, rstring traderId, rstring symbol, float64 score,
list<tradeEvidence> evidenceData ;

Trade evidence schema
rstring dataType, rstring startTime, float64 windowSize, list<rstring> id;

Event schema
id, eventType, startTime, windowSize, traderId, symbol, data

Table 7: Event schema

Field name Field type Description

id String System generated id for the
event

eventType String The type of the event

startTime String The system time when the event
occurred

windowSize Float The size (in seconds) of the data
window that the operator used
while looking for events in the
input data stream.

traderId String The trader id associated with the
event

symbol String The symbol associated with the
event

data List of event data Event specific data list. See Event
Data schema

Trade surveillance 27

Event data schema
name, value

Table 8: Event data schema

Field name Field type Description

name String The name of the event property

value String The value of the event property

Pump-and-dump use case
The solution contains a pump-and-dump use case, which carries out structured analysis of trade, order,
and execution data and unstructured analysis of email data. The result is a daily score for the pump-and-
dump indication.

The pump-and-dump score is distributed daily among the top five traders. Top five is determined based
on the positions that are held by the traders.

Triggering the pump-and-dump rules

Ensure that the following folders exist on the Hadoop file system. The folders are:

• /user/sifsuser/trade/
• /user/sifsuser/order/
• /user/sifsuser/execution/
• /user/sifsuser/quote/
• /user/sifsuser/EOD/
• /user/sifsuser/sifsdata/ticker_summary/ticker_summary/
• /user/sifsuser/sifsdata/position_summary/
• /user/sifsuser/sifsdata/positions/
• /user/sifsuser/sifsdata/pump_dump/
• /user/sifsuser/sifsdata/trader_scores/

Both structured market data and unstructured email data are used for pump-and-dump detection. For
accurate detection, ensure that you load the email data before you load the structured data. After
structured data is pushed into Hadoop, the pump-and-dump implementation processes this data and
automatically triggers the inference engine. The inference engine considers evidences from both email
and structured data analysis to determine the risk score.

Understanding the pump-and-dump analysis results

When the data is loaded into Surveillance Insight for Financial Services, the pump-and-dump rules are
triggered and the following files are created on the Hadoop file system:

• Date-wise trade summary data, including moving averages, is created in /user/sifsuser/
sifsdata/ticker_summary/ticker_summary_<date>.csv

• Date-wise position summary data is created in /user/sifsuser/sifsdata/positions/
top5Positions_<date>.csv and/user/sifsuser/sifsdata/position_summary/
position_summary_<date>.csv

• Date-wise pump-and-dump score data is created in /user/sifsuser/sifsdata/pump_dump/
pump_dump_<date>.csv

• Date-wise trader score data is created in /user/sifsuser/sifsdata/trader_scores/
trader_scores_<date>.csv

28 IBM Surveillance Insight for Financial Services Version 2.0.2 : IBM Surveillance Insight for Financial Services
Solution Guide

The Spark job for pump-and-dump evidence collection is run for each date. This job collects all of the
evidences for the day from Hadoop and populates the following tables in the SIFS database:

• Risk_Evidence
• Evidence_Ticker_Rel
• Evidence_Involved_Party_Rel

The Spark job also runs the inference engine, which applies a risk model and detects whether an alert
needs to be generated for the evidence. Based on the result, either a new alert is generated, an existing
alert is updated, or no action is taken. The alert information is populated to the following tables:

• Alert
• Alert_Ticker_Rel
• Alert_Involved_Party_Rel
• Alert_Risk_Indicator_Score
• Alert_Evidence_Rel

After the evidence and alert tables are updated, the pump-and-dump alert appears in the dashboard.

Pump-and-dump alerts are long running in that they can span several days to weeks or months. The same
alert is updated daily if the risk score does not decay to 0.

The following rules explain when an alert is generated versus when an alert is updated:

1. If no evidence of pump-and-dump activity for a ticker from either structured or unstructured analysis
exists, or if the risk score is too low, then no alerts are created.

2. If the inference engine determines that an alert must be created, then an alert is created in the
Surveillance Insight database against the ticker. The top 5 traders for the day for that ticker are also
associated with the alert.

3. After the alert is created, the alert is updated daily with the following information while the ticker
remains in a pump or dump state:

• New alert risk indicator scores are created for each risk indicator that is identified on the current
date.

• The alert end date is updated to the current date.
• The alert score is updated if the existing score is less than the new score for the day.
• The new evidences for the day is linked to the existing alert.
• New parties that are not already on the alert are linked to the alert. New parties would be the top 5

parties for the ticker for the current date.
4. After the alert is create, if the ticker goes into an undecided state, the risk score will start decaying

daily. If the score is not 0, the alert is updated as indicated in step 3. For an undecided state, the alert
has no pump or dump evidences for the date.

Spoofing detection use case
The spoofing detection use case implementation analyzes market data events and detects spoofing
patterns.

A spoofer is a trader who creates a series of bulk buy or sell orders with increasing bid or decreasing ask
prices with the intention of misleading the buyers and sellers in a direction that results in a profit for the
spoofer. The spoofer cancels the bulk orders before they are completed and then sells or buys the
affected stocks at a favorable price that results from the spoofing activity. By analyzing the stock data that
is streaming in from the market, the spoofing detection use case detects spoofing activity in near real
time.

Trade surveillance 29

Triggering the spoofing rules

The spoofing use case implementation requires order, execution, and quote data to detect the spoofing
pattern. Loading the data triggers the spoofing rules and updates the alert and score tables in the
database.

Understanding the spoofing results

The spoofing use case leverages the Trade Surveillance Toolkit to detect spoofing. It analyzes the market
data by looking at the events that are fired by the toolkit and generates alerts if a spoofing pattern is
detected. The evidence is then used to determine whether an alert needs to be generated. This decision is
made by the inference engine. The alert and the evidence are stored in the Surveillance Insight database
by using the REST services.

Spoofing user interface

A spoofing alert appears in the Alerts tab.

Figure 21: Spoofing alert

Click the alert to see the alert overview and reasoning.

Figure 22: Spoofing overview page

The evidence shows the spoofing pattern where in the bulk orders, unusual quote price movement, and
high ratio of orders to cancellation are followed by a series of bulk executions. These evidences contribute
to the overall risk as shown in the reasoning graph. In this example, all of the evidences have a 99%
weight. This is because for spoofing to happen, each of the events, represented by the risk indicators,
should necessarily happen. Otherwise, the pattern would not qualify for spoofing.

30 IBM Surveillance Insight for Financial Services Version 2.0.2 : IBM Surveillance Insight for Financial Services
Solution Guide

Off-market use case
The off-market use case works on forex transaction data and detects transactions that have a deal rate
that are out side of the market reference data range at the time of the transaction. The use case combines
this evidence with the history of alerts of the trader that are involved in the transaction and decides
whether an alert needs to be generated.

Triggering the off-market use case

The off-market use case implementation requires forex transaction data and market reference data—high
and low deal rates for every minute—from the equity market. Loading the data into HDFS triggers the off-
market detection.

Understanding the off-market results

An off-market alert appears in the Surveillance Insights dashboard as follows:

Click the alert to view the off-market alert overview.

As shown in the diagram, the reasoning chart contains two categories of risk indicators: transaction risk
and party risk. Each category has one risk indicator:

1. Deal rate anomaly, which indicates that there is an anomaly in the transaction deal rate.
2. Past Alert History, which indicates that the involved party has a history of alerts in the past.

The off-market alert also contains the trade details page that shows the following trade chart:

Trade surveillance 31

The trade chart contains the price and volume chart of the transactions and also the point at which the
deal rate anomaly occurred, which is indicated by a circle. Further details about the alert history, the
transaction, and the party appear in the details sections of the trade report that is displayed on the right
side.

Front running use case
The front running use case is designed to detect potential cases where an employee deals ahead of a
client. To do this, the employee takes advantage of advance knowledge of large pending orders from a
client that has a potential to impact the market price significantly.

Triggering the front running use case

The front running use case works on order data.

1. Run the Trade Data Processor job (TradeDataProcessor_SI.sh) to generate the necessary risk
indicators for front running.

Ensure that the order data for the date that needs to be processed is loaded into the following folder in
HDFS:

/user/sifsuser/order/Order_<yyyy-mm-dd>.csv

The schema for the data is as follows:

• ClOrdID
• Symbol
• TransactTime
• OrderType
• OrderQty
• Price
• Side
• PartyID

Refer to the New Single Order specification in FIX 4.4 for a description of the above fields.
2. Run the Front Running Inference job (FrontRunningInference.sh).

32 IBM Surveillance Insight for Financial Services Version 2.0.2 : IBM Surveillance Insight for Financial Services
Solution Guide

This job creates the front running alerts, which are displayed in the interface.

Viewing the alerts

Figure 23: Front running alerts

Click an alert to display the details.

Figure 24: Front running alert details

Note: The current implementation of the front running use case includes the bulk order and front order
risk indicators. It does not include e-comm and party risk indicators.

Click one of the trade evidences or the Trade Detail tab to show the trade chart.

Figure 25: Front running trade chart

Trade surveillance 33

Extending Trade Surveillance
Solution developers can use the solution's architecture to develop new trade surveillance use cases.

The Surveillance Insight platform is built around the concept of risk indicators, evidences, and alerts. A
use case typically identifies a certain type of risk in terms of risk indicators.

One of the first things for any use case implementation on the platform is to identify the risk indicators
that are to be detected by the use case. After the risk indicators are identified, the kinds of evidence for
the risk must be identified. For example, the indicators might be trade data or email data that showed
signs of risk during analysis.

A risk model must be built that uses the evidence so that the inference engine can determine whether an
alert must be generated.

The type of alerts that are generated by the use case must also be identified.

The identified risk indicators, the model, and the alert types are then loaded into the The Surveillance
Insight database:

• The risk indicators must be populated in the RISK_INDICATOR_MASTER table.
• The risk model must be populated in the RISK_MODEL_MASTER table.
• The alert type must be populated in the ALERT_TYPE_MASTER table.

End-to-end implementation

The following diagram shows the sequence of steps that are involved in developing a new Surveillance
Insight for Financial Services (SIFS) trade use case:

Figure 26: End-to-end implementation for a new use case

1. Data Handler: The DataLoader Streams job that is part of the Surveillance Insights installation
monitors certain folders in HDFS. When data is loaded into these folders, the DataLoader picks the
content and make it available to the use case implementations.

2. Implementing Risk Indicators: Typically a new use case uses one or more of the existing risk indicators
or you must implement new indicators. New risk indicators can be implemented in Streams or in
Spark. This decision is made based on what data the risk indicator needs to work on. Typically all
indicators that need to work on market data are implemented as Streams operators. They tap into the
data that is coming from the DataLoader and perform the necessary risk detection. Operators that
need to work on non-market data such as party alert history or proximity of risk indicators should to be
implemented in Spark, and then integrated into the end of the day job that uses all of the evidences
and invokes the inference engine.

Implementing a new risk indicator involves implementing the core logic that is involved in reading and
analyzing the market data for patterns of interest based on the use case requirements.

34 IBM Surveillance Insight for Financial Services Version 2.0.2 : IBM Surveillance Insight for Financial Services
Solution Guide

a. Understand the event-based approach that is needed to perform trading analytics.

One of the fundamental principles on which the Trade Surveillance Toolkit operates is generating
events that are based on stock market data. The toolkit defines a basic event type that is extensible
with event-specific parameters. Different types of stock data, such as orders, quotes, executions,
and trade data, are analyzed by the operators in the toolkit. Based on the analysis, these operators
generate different types of events.

The primary benefit of the event-based model is that it allows the specific use case implementation
to delegate the basic functions to the toolkit and focus on the events that are relevant. Also, this
model allows the events to be generated one time and then reused by other use cases. It also
drastically reduces the volume of data that the use case must process.

b. Identify the data types and analytics that are relevant to the use case.

Identify what data is relevant and what analytics need to be performed on the data. These analytic
measures are then used to identify the events that are of interest to the use case.

c. Identify Trading Surveillance Toolkit contents for reuse.

Map the data types and events that are identified to the contents in the toolkit. The result of this
step is a list of data types and operators that are provided by the toolkit.

d. Design the Streams flows by leveraging the toolkit operators.

This step is specific to the use case that you are implemented.

In this step, the placement of the Trading Surveillance Toolkit operators in the context of the larger
solution is identified. The configuration parameter values for the different operators are identified.
Also, data types and operators that are not already present in the toolkit are designed.

e. Implement the use case and generate the relevant risk indicators.
3. Send out a riskEvent to the RiskEvidenceSink operator. This task takes care of generating a risk

evidence and dropping the evidence JSON files into a configured Kafka topic.

It is important to understand the structure and contents of the risk event so that the right information
is populated into the SIFS database. For more information about the schema, see “Risk event schema”
on page 27.

Every risk event contains an evidence data list. Each item in the list if of the type tradeEvidence. This
field is used by the TradeEvidencePersistence spark job to decide what evidence data needs to be
populated in the SIFS database so that the trade charts and evidences can be shown in the
Surveillance Insights dashboard.

For example, a risk indicator that requires evidences of type orders and quotes to be shown in the
dashboard requires two evidence data records in the risk event.

The following is an example of one evidence data record with the type of quote:

Datatype : "quote"
 startTime : indicates from where to start reading the quote.csv file in
HDFS
 windowSize : startTime + windowSize (in seconds) is the duration for
which records
 will be fetched from the quotes.csv in HDFS.
 list<> id : if there are specific quotes to be shown in the trade
charts, provide the
 list of ids here. In this case, the startTime and windowSize need
not be provided.
 They will be ignored.Provide empty string for startTime and 0.0 for
windowSize.

The second evidence data record is similar, but the type is "order".
4. The Trade Evidence Persistence Spark job that is part of the SIFS installation waits for risk evidences

on a configured topic. When it receives evidences, it persists the evidence in the SIFS database. It also

Trade surveillance 35

brings in additional trade evidences that might be required to generate the trade charts in the
Surveillance Insights dashboard.

5. Create an end-of-day Spark job that reads all of the relevant evidences for the use case (from the SIFS
database) and invokes the inference engine which is a REST API call.

The inference engine applies the risk model for the use case and determines whether a new alert must
be created for the identified risk evidences. If the engine returns a positive result, it create an alert in
the Surveillance Insight database by invoking the createAlert REST service.

Summary

A new trade use case requires the following elements:

1. Implementing a Streams job with the required risk indicators and wiring them to the data loader job
exports and the risk evidence sink operator.

2. Implementing any risk indicators that are not directly dependent on market data. This is done by using
Spark APIs.

3. Implementing an end-of-day Spark job that uses all of the risk evidences and invokes the inference
engine. If necessary, the job also creates an alert in the SIFS database.

Surveillance Insight for Financial Services provides the following components to help you build your own
use cases:

• Surveillance Base Toolkit with reusable types and operators
• Data loader to abstract HDFS folder monitoring
• Evidence persistence job in Spark
• Inference engine APIs
• Alert APIs

36 IBM Surveillance Insight for Financial Services Version 2.0.2 : IBM Surveillance Insight for Financial Services
Solution Guide

Chapter 4. E-Comm surveillance
The e-comm component processes unstructured data such as chat and email data. E-comm data is
evaluated against various features, and certain risk indicators are computed. These risk indicators are
later analyzed by the inference engine to detect alarming conditions and generate alerts. The e-comm
component evaluates the features based on the policies that are defined in the system.

The following diagram shows the end-to-end flow for E-Comm Surveillance. The flow uses Spark.

Some items in the diagrams above, such as the Identify Risk Indicators, the Feature Extraction Pipeline,
and the Communication Data Handler, are custom built components that might have to be implemented
specifically for a use case, based on the requirements. The other items are pre-built components that are
available in Surveillance Insight for Financial Services.

The following e-comm-related feature extractors that are available in Surveillance Insight for Financial
Services:

• Emotion and sentiment detection
• Concept mapper
• Entity extractor
• Document classifier (confidential)

The following e-comm-related risk indicators are available in Surveillance Insight for Financial Services:

• Anger anomaly
• Sad anomaly
• Negative sentiment anomaly
• Inbound anomaly
• Outbound anomaly
• Confidential anomaly

© Copyright IBM Corp. 2016, 2017 37

• Unusual mail size
• Unusual number of attachments
• Unusual communication timings
• Unusual number of recipients
• Recruit victims
• Recruit co-conspirators
• Efforts on recruit victims
• Efforts on recruit co-conspirators

E-Comm data ingestion
The Surveillance Insight for Financial Services solution processes e-comm data based on policy. At least
one policy must be defined in the system to be able to process the e-comm data. A policy is a user-
defined document that controls the features that need to be extracted.

After policies are created, the e-comm data can be ingested into the solution. Policies can be created and
updated by using the REST services. For more information, see Policy service APIs.

A policy can be defined at the system level or per role.

System level policy

System level features are extracted from every communication. The following is an example of a system
level policy:

{
 "policy": {
 "policyname": "Policy 1",
 "policycode": "POL1",
 "policytype": "system",
 "policysubcategory": "Sub1",
 "policydescription": "System Policy 1",
 "features": [{
 "name": "emotion"
 }]
 }
}

Role level policy

Role level features are extracted based on the initiator party’s role and the features that are defined for
the role. The following is an example of a role level policy:

{
 "policy": {
 "policyname": "Policy 2",
 "policycode": "POL2",
 "policytype": "role",
 "policysubcategory": "Sub2",
 "policydescription": "Role Level Policy",
 "role": [
 "Trader",
 "Banker"
],
 "features": [{
 "name": "document classifier"
 }, {
 "name": "concept mapper"
 },{

38 IBM Surveillance Insight for Financial Services Version 2.0.2 : IBM Surveillance Insight for Financial Services
Solution Guide

 "name": "entity extractor"
 }]
 }
}

The Surveillance Insight for Financial Services solution expects e-comm data, such as email and chat, in
XML format. E-comm data such as email and chat content are ingested by using REST services. These
services ingest data into Kafka topics.

Sample e-comm email and chat

A sample email xml is available here. (www.ibm.com/support/knowledgecenter/SSWTQQ_2.0.2/
samplefile/SurveillanceInsightSampleEcommEmail.xml)

A sample chat xml is available here. (www.ibm.com/support/knowledgecenter/SSWTQQ_2.0.2/
samplefile/SurveillanceInsightSampleEcommChat.xml)

E-Comm feature extraction
After the e-comm data is ingested into a Kafka topic, it is processed by set of Spark jobs.

PersistEmail job

This job processes email xml and extracts features based on the defined policies.

PersistChat job

This job processes chat xml and extracts features based on the defined policies

PersistComm job

This job processes voice and communication data in JSON format and extracts features based on the
defined policies.

The above Spark jobs use the ProcessCommunication API.

ProcessCommunication processCommunication = new ProcessCommunication();
processCommunication.setConfigProp(sifsProperties);
processCommunication.setMessageType(ECommConstants.EMAIL_MESSAGE_TYPE);

processCommunication.loadSIFSFeatures();

E-Comm surveillance 39

http://www.ibm.com/support/knowledgecenter/SSWTQQ_2.0.2/samplefile/SurveillanceInsightSampleEcommEmail.xml
http://www.ibm.com/support/knowledgecenter/SSWTQQ_2.0.2/samplefile/SurveillanceInsightSampleEcommChat.xml

processCommunication.process("PersistEmail")

The Spark job must invoke the interface as shown in the code example above.

The ProcessCommunication API provides an interface to add custom features to the e-comm pipeline. For
example, if you have implemented an emotion feature transformer using the Spark ML Pipeline
Transformer API and you want it to be invoked as part of e-comm pipeline, you must add that feature
before you invoke the process. For example:

ProcessCommunication processCommunication = new ProcessCommunication();
//Initialize Transformer
EmotionFeatureExtractor emotionFeatureExtractor = new
EmotionFeatureExtractor(configProp.getProperty("dictPath"),
configProp.getProperty("rulesPath"))
.setInputCol("commText")
.setOutputCol("emotionFeature")
.setFeatureName("emotion");
processCommunication.addFeature(emotionFeatureExtractor);
processCommunication.process("PersistEmail");

The PersistChat and the PersistComm jobs use the same ProcessCommunication API and set the
appropriate message type so that data is read from the respective Kafka topic and further processed to
extract features.

The PersistEmail, PersistChat, and PersistComm jobs performs following tasks:

1. The job loads all of the parties and their contact points in memory as part of the initialization.
2. The job reads communication data from the Kafka topic in micro batches.
3. The data in each micro batch is processed further:

a. The data from Kafka is parsed and converted into communication objects.
b. The policy service is invoked and all of the policies are registered in the system.
c. The communication object is enriched with master data, such as party id, job role for initiator, and

all participants, and a feature matrix is created based on the eligible policy per initiator.
d. The e-comm pipeline is executed for the features identified in the feature matrix.
e. The REST service is invoked to persist the communication and its associated entities in the SIFS

database and in Solr. The REST service (/SIFSServices/commservice/v1/createComm/) creates
data in the Comm mapping table and the Comm entity related tables.

f. The communication and its extracted features are persisted in the HDFS. Data is stored in HDFS in
columnar format in form of csv files. A sample file with data is available here. (www.ibm.com/
support/knowledgecenter/SSWTQQ_2.0.2/samplefile/
SurveillanceInsightSampleEcommFeatureExtraction.csv).

Communication schema
Surveillance Insight for Financial Services transforms email and chat xml structure to communication
objects.

The communication objects use the following fields:

Table 9: Communication schema objects

Field name Field type Field description

commType String Communication Type such as
email, chat, phone

40 IBM Surveillance Insight for Financial Services Version 2.0.2 : IBM Surveillance Insight for Financial Services
Solution Guide

http://www.ibm.com/support/knowledgecenter/SSWTQQ_2.0.2/samplefile/SurveillanceInsightSampleEcommFeatureExtraction.csv

Table 9: Communication schema objects (continued)

Field name Field type Field description

commChannel String Communication channel such as
voice and e-comm

commText String Communication text

commStartTime String Communication start time

commEndTime String Communication end time

commSubject String Communication subject

globalCommId String Communication reference ID of
the source

metaFeatures String The meta features of the
communication in JSON format

initiator String Communication initiator contact
details

participants Array Communication participants
contact details

E-Comm risk scoring
Communication data is extracted in form of features and is further analyzed by the inference engine to
detect if any risk is found and then publishes that in the form of alerts to the Case Manager.

Analyze communication job

After the e-comm data is processed by the Spark job, it is available in HDFS in form of communication
data and its extracted features. This data is further analyzed at the end of day by the analyze
communication Spark job.

The analyze communication job is implemented by using the ProcessCommunication API. It supports a
mechanism to add new risk indicators.

ProcessCommunication processCommunication = new ProcessCommunication();
processCommunication.setConfigProp(sifsProperties);

BehaviorRiskIndicator behaviorRiskIndicator = new BehaviorRiskIndicator()
.setInputCol("emotionFeature").setSadOutputCol("RD2")
.setAngerOutputCol("RD1").setSentimentalOutputCol("RD3")
.setSelfThreshold(Double.valueOf(sifsProperties.getProperty("behSelfThreshold
")))
.setPopThreshold(Double.valueOf(sifsProperties.getProperty("behPopThreshold")
))
.setRiskScoreThreshold(Double.valueOf(sifsProperties.getProperty("riskScoreTh
reshold")))

processCommunication.addRiskIndicator(behaviorRiskIndicator);

E-Comm surveillance 41

processCommunication.analyze("AnalyzeComm",analysisDate);

This job performs the following tasks:

1. The job reads the communication data and extracted features from HDFS for the date for which
analysis is being done.

2. This job aggregates the data per party and computes the behavior profile, such as the max anger score
or the max disgust score, and persists the data in SIFS database.

3. The following risk indicators are computed:

a. Anger anomaly
b. Sad anomaly
c. Negative sentiment anomaly
d. Inbound anomaly
e. Outbound anomaly
f. Confidential anomaly

g. Unusual mail size
h. Unusual number of attachments
i. Unusual communication timings
j. Unusual number of recipients

k. Recruit victims
l. Recruit co-conspirators

m. Efforts on recruit victims
n. Efforts on recruit co-conspirators

4. The risk indicators are implemented by using the Spark ML Pipeline Transformer API. To create a new
risk indicator, you must write a custom transformer and get the transformer invoked through the
pipeline or invoke it independently by using the Transformer transform API.

5. Risk Indicators are persisted to the SIFS database and to Solr through the REST service (/
SIFSServices/alertservice/v1/alert/createEvidence).

6. For anomaly based risk indicators, the job computes a profile per party to get the average score for the
day and then persists the scores in the SIFS database.

7. The job invokes the inference model—the Party Behavior Risk Model—to detect if the risk evidences
have any alert conditions and then persists those alerts in the SIFS database and in Solr and also
publishes the alerts to Case Manager.

Profile aggregator job

This job computes the reference profile for each party and then updates the party profile and enterprise
profile in the SIFS database.

1. This job computes the profile—MEAN and STD for all parties for a given date. The job expects the date
as an input parameter and expects the window parameter to be set in the sifs.spark.properties
file, where window is the number of days for which the MEAN and STD need to be calculated.

2. This job updates the MEAN and STD values in the PARTY_PROFILE for the profile date. It also inserts
the MEAN and STD in the ENTERPRISE_POFILE for the profile date. Surveillance Insight expects that
the job is run for a given date only one time. If the same job is run for the same date more than one

42 IBM Surveillance Insight for Financial Services Version 2.0.2 : IBM Surveillance Insight for Financial Services
Solution Guide

time, an exception is logged by the job. Only INSERT functions are supported. UPDATE functions are
not supported.

Party risk scoring job

This job computes the risk score of a party based on the past alerts for that party.

The job requires the following values:

• PartyRiskDateWindow = 90
• SolrProxyURL = https://localhost:9443/SIFSServices/surveillanceui/v1/index/update

The job reads the past alerts based on the PartyRiskDateWindow value.

E-Comm Spark job configration
The E-Comm Spark job uses the sifs.spark.properties file for the job parameters.

sifs.spark.properties contains the following parameters:

Table 10: E-Comm Spark job parameters

Property name Property value Description

metadata.broker.list <IP>:9093 The IP address and port number
where the Kafka server is running

security.protocol SSL

ssl.truststore.location /home/sifsuser/security/
SIKafkaClientSSLTruststore.jks

The Kafka client SSL truststore
location as configured in Kafka

ssl.truststore.password SurveillanceInsightPass2016 The SSL truststore password as
configured in Kafka

ssl.keystore.location /home/sifsuser/security/
SIKafkaClientSSLKeystore.jks

The Kafka client SSL keystore
location as configured in Kafka

ssl.keystore.password SurveillanceInsightPass2016 The SSL keystore password as
configured in Kafka

ssl.key.password SIKafkaKeyPass SSL key password

bootstrap.servers <IP>:9093 The IP address and port number
where the Kafka server is running

group.id spark-streaming-notes Group name to subscribe to the
Kafka topic

auto.offset.reset earliest Kafka auto offset setting

KafkaEncryptKeyStore /home/sifsuser/security/
SIKafkaDecrypt.jks

Keystore location to decrypt the
encrypted data

KafkaEncryptKeyStorePassword SurveillanceInsightPass2016 The Keystore password

KafkaEncryptKeyPassword SIKafkaKeyPass Key password

E-Comm surveillance 43

Table 10: E-Comm Spark job parameters (continued)

Property name Property value Description

KafkaEncryptAlias SIKafkaSecurityKey Key alias

sparkWarehousePath file:///home/sifsuser/spark-2.1.1-
hadoop2.7/bin/spark-warehouse

HDFSFilePath hdfs://<IP>:8020/user/sifsuser/ HDFS path

KafkaSSLEnabled true If SSL is enabled for Kafka. The
value can be true or false.

KafkaEncryptionEnabled true If encryption is enabled for
Kafka. The value can be true or
false.

master yarn If the job is running on a yarn
cluster

InferenceREST https://<IP>:<PORT>/analytics/
models/v1/model_predict/

The URL where the Inference
REST service is hosted

CreateAlertREST https://<IP>:<PORT>/
SIFSServices/alertservice/v1/
alert/createAlert

The REST service URL to create
alerts

CreateEvidenceREST https://<IP>:<PORT>/
SIFSServices/alertservice/v1/
alert/createEvidence

The REST service URL to create
risk evidences

UpdateAlertREST https://<IP>:<PORT>/
SIFSServices/alertservice/v1/
alert/updateAlert

The REST service URL to update
alerts

PartyRiskDateWindow 90 To get past alerts for last 90 days.
Used by party risk scoring job

SolrProxyURL https://localhost:9443/
SIFSServices/surveillanceui/v1/
index/update

The REST service URL to update
the party risk scoring job in Solr

db2jdbcurl jdbc:db2://<IP>:50001/
SIFS:sslConnection=true;current
Schema=SIFS;

JDBC URL to connect to the SIFS
database

db2user db2inst1 Database user

db2password db2inst1 Database password

db2TrustStore /home/sifsuser/
SIDB2StreamsClient.jks

Keystore to connect to the secure
database

db2TrustStorePassword SurveillanceInsightPass2016 Kesytore password

spark.streaming.kafka.consumer.
poll.ms

512 Kafka polling time

spark.streaming.backpressure.en
abled

true Spark streaming parameter

spark.streaming.receiver.maxRat
e

20 Spark streaming parameter

44 IBM Surveillance Insight for Financial Services Version 2.0.2 : IBM Surveillance Insight for Financial Services
Solution Guide

Table 10: E-Comm Spark job parameters (continued)

Property name Property value Description

spark.streaming.kafka.maxRateP
erPartition

20

ecommTopic sifs.ecomm.in Kafka topic to which
PersistComm spark job is polling
to and accepting communication
formatted as JSON

window 30 Number of days used to compute
the rolling average by the
ProfileAggregator Spark job

riskModelCode PR Risk model code to invoke the
Party Behavior Risk Model. If you
have more than one model,
separate each by a comma

kafkaDuration 20 Duration in seconds after which
the Kafka topic is polled by the
Spark jobs

emailTopic sifs.email.in Kafka topic to which the
PersistEmail Spark job is polling
to and accepting email as XML
files

chatTopic sifs.chat.in Kafka topic to which the
PersistChat Spark job is polling to
and accepting chat data as XML
files

dictPath /home/sifsuser/dict Path where the dictionaries for
Emotion and Concept Mapper are
copied

rulesPath /home/sifsuser/rules Path where the rules for Emotion
and Concept Mapper are copied

commFolderPath comm/ Folder name in HDFS where the
communication and extracted
features are stored

policyServiceUrl https://<IP>:<PORT>/
CommServices/ecomm/policy

The REST service URL for
querying policies

policyServiceUser ibmrest1 Policy service user

policyServicePassword ibmrest@pwd1 Policy service password

CreateCommREST https://<IP>:<PORT>/
SIFSServices/commservice/v1/
createComm

The REST service URL to create
comm mapping and entity
relationship in the SIFS database

entityServiceUrl https://<IP>:<PORT>/analytics/
models/v1/analyzetext/

The REST service URL to invoke
the entity extractor feature

confidentialServiceHost https://<IP>:<PORT> The REST service host to invoke
the document classifier feature

E-Comm surveillance 45

Table 10: E-Comm Spark job parameters (continued)

Property name Property value Description

confidentialServicePath /nlc/v1/models/
2017-08-22_17:15:54.243935/
classify/

The REST service URI to invoke
the document classifier feature

riskScoreThreshold 0.5 Risk score threshold above which
the risk evidences are stored in
the SIFS database

behSelfThreshold 1.0 Self-threshold for the Behavior
Anomaly Risk Indicator

behPopThreshold 2.0 Population threshold for the
Behavior Anomaly Risk Indicator

mailSize 2000 Threshold for the size of the
communication content

numberOfAttachments 3 Threshold for the number of
attachments

windowStartTime 09:00:00 Acceptable communication start
time window

windowEndTime 18:00:00 Acceptable communication end
time window

numberOfRecipients 4 Threshold for the number of
recipients

commVolumeSelfThreshold 1.0 Self-threshold for inbound and
outbound anomaly risk indicator

commVolumePopThreshold 2.0 Population threshold for inbound
and outbound anomaly risk
indicator

recruitSelfThreshold 1.0 Self-threshold for the recruit
victims and recruit conspirators
for the anomaly risk indicator

recruitPopThreshold 2.0 Population threshold for recruit
victims and recruit conspirators
for the anomaly risk indicator

commContentSelfThreshold 1.0 Self-threshold for the
confidential anomaly risk
indicator

commContentPopThreshold 2.0 Population threshold for the
confidential anomaly risk
indicator

End-to-end flow for e-comm processing
The following describes the end-to-end flow for e-comm processing.

1. Create a risk model for party behavior by using the Model Building tool.

a. Create training data and train the model.

46 IBM Surveillance Insight for Financial Services Version 2.0.2 : IBM Surveillance Insight for Financial Services
Solution Guide

b. Publish the model.
2. Create a natural language classifier (NLC) by using the Model Building tool.

a. Create training data and train the classifier model.
b. Publish the classifier model.

3. Configure the newly created models for the Spark jobs to consume.
4. Deploy the feature extraction Spark jobs: PersistEmail, PersistChat, PersistComm
5. Deploy the inference job: AnalyzeCommunication
6. Create policy.
7. Ingest the data.
8. Review the alerts in the Surveillance Insight dashboard.

E-Comm surveillance 47

48 IBM Surveillance Insight for Financial Services Version 2.0.2 : IBM Surveillance Insight for Financial Services
Solution Guide

Chapter 5. Voice surveillance
The voice component processes voice data files either in WAV or PCAP formats into text. The text from the
voice data files is then evaluated against various features and different risk indicators are calculated. The
risk indicators are then analyzed by the inference engine to detect alarming conditions and generate
alerts if needed.

The following diagram shows the data flow for voice surveillance.

1. In IBM Surveillance Insight for Financial Services, the voice data can either be fed through network
packets or through the voice data ingestion services.

2. For audio files, if the audio file or metadata format is different an adaptor must be built to invoke the
voice data ingestion service.

3. The voice data ingestion service triggers the Speech to Text Streams processing flow.
4. The PCAP Streams processing flow reads the voice data from network packets and fetches the

metadata from Bluewave APIs.
5. The Speech to Text operators translate the voice data into transcripts with Speak diarisation.
6. The voice artifacts can be optionally exported via an export interface.
7. After the Speech to Text transcript is done, a communication object is then published to the

downstream analysis pipeline.

Voice Ingestion service
IBM Surveillance Insight for Financial Services processes voice data in the following formats:

• WAV file in uncompressed PCM, 16-bit little endian, 8 kHz sampling, and mono formats
• PCAP files and direct network port PCAP

The voice ingestion service accepts multipart requests from the user. The multipart requests should
contain the following parts:

• A part name "metadata" containing the metadata JSON
• A part name "audiofile" containing the audio binary data

The voice metadata JSON is parsed to get the call start date and gcid values. These values are used to
store the audio binary data on the HDFS, where the converted audio file is persisted. The voice metadata
JSON is published to the Kafka topic for further processing by the Voice Streams application. The
incoming audio file can be WAV, MP3, or OPUS formats. MP4, M4A, M4P, M4B, M4R, and M4V are not
supported.

The audio file is converted by using the ffmpeg utility to an uncompressed PCM, 16-bit little endian, 8 kHz
sampling mono format WAV file. For example, if an audio file named call001.mp3 is passed to the Voice
Ingestion service, the file is converted to cal001.wav and persisted on HDFS.

© Copyright IBM Corp. 2016, 2017 49

A sample voice dataset consisting of audio and metadata JSON is provided to help ingest voice files. Use
the following command to run the script:

./processvoice.sh

The following is a sample voice ingestion service multipart request:

HEADERS

Content-Type: multipart/form-data; boundary=--------------------
--------e73b4c199aee

BODY

------------------------------e73b4c199aee
Content-Disposition: form-data; name="metadata"; filename="meta.
json"
Content-Type: application/octet-stream

{
 "Initiator": {
 "ContactID": "(+1)-204-353-7282",
 "Name": "Chris Brown",
 "DeviceID": "dev004",
 "CallStartTimeStamp": "2017-04-13 11:18:20",
 "CallEndTimeStamp": "2017-04-13 11:19:26"
 },
 "Participants": [{
 "ContactID": "(+1)-687-225-8261",
 "Name": "Jaxson Armstrong",
 "DeviceID": "dev002",
 "CallStartTimeStamp": "2017-04-13 11:18:20",
 "CallEndTimeStamp": "2017-04-13 11:19:26"
 }, {
 "ContactID": "(+1)-395-309-9915",
 "Name": "Henry Bailey",
 "DeviceID": "dev003",
 "CallStartTimeStamp": "2017-04-13 11:18:20",
 "CallEndTimeStamp": "2017-04-13 11:19:26"
 }],
 "ContactIDType": "phone",
 "AudioFileName": "File1.wav",
 "CallStartTimeStamp": "2017-04-13 11:18:20",
 "CallEndTimeStamp": "2017-04-13 11:19:26",
 "GlobalCommId": "gcid100906524390995"
}

------------------------------e73b4c199aee
Content-Disposition: form-data; name="audiofile"; filename="File
_2.mp3"
Content-Type: application/octet-stream

ID3......vTSS....Logic 10.1.0COM..h.engiTunNORM. 00000284 000002
87 00004435 000043F8 00005A00 00005A00 00007D9C 00007E47 0000715
E 0000715E.COM....engiTunSMPB. 00000000
............................
..
------------------------------e73b4c199aee--

50 IBM Surveillance Insight for Financial Services Version 2.0.2 : IBM Surveillance Insight for Financial Services
Solution Guide

Voice data services
IBM Surveillance Insight for Financial Services provides REST API services to allow persisting of voice
artifacts and retrieval of audio streams required for playback.

Export REST API service

The Export REST service facilitates the voice streams application to export voice metadata, transcript, and
audio file (in WAV format). The default implementation persists these onto HDFS.

The Export REST service accepts a multipart request. The multipart request should contain the following
parts:

• A part name "metadata" containing the voice metadata. This part is mandatory.
• A part name "audiofile" containing the audio data. This part is optional.
• A part name "transcript" containing the voice transcript data. This part is optional.

A sample export service multipart request is shown below:

Content-Type: multipart/form-data; boundary=--------------------
--------84989e398b28

------------------------------84989e398b28
Content-Disposition: form-data; name="metadata"; filename="metad
ata.json"
Content-Type: application/octet-stream

{
 "Initiator": {
 "ContactID": "(+1)-204-353-7282",
 "Name": "Chris Brown",
 "DeviceID": "dev004",
 "CallStartTimeStamp": "2017-04-13 11:18:20",
 "CallEndTimeStamp": "2017-04-13 11:19:26"
 },
 "Participants": [{
 "ContactID": "(+1)-687-225-8261",
 "Name": "Jaxson Armstrong",
 "DeviceID": "dev002",
 "CallStartTimeStamp": "2017-04-13 11:18:20",
 "CallEndTimeStamp": "2017-04-13 11:19:26"
 }, {
 "ContactID": "(+1)-395-309-9915",
 "Name": "Henry Bailey",
 "DeviceID": "dev003",
 "CallStartTimeStamp": "2017-04-13 11:18:20",
 "CallEndTimeStamp": "2017-04-13 11:19:26"
 }],
 "ContactIDType": "phone",
 "AudioFileName": "File1.wav",
 "CallStartTimeStamp": "2017-04-13 11:18:20",
 "CallEndTimeStamp": "2017-04-13 11:19:26",
 "GlobalCommId": "gcid100906524390995"
}

------------------------------84989e398b28
Content-Disposition: form-data; name="audiofile"; filename="File
1.wav"
Content-Type: application/octet-stream

RIFF.=..WAVEfmt@....>......data.<..INFOISFT....Lavf57.7
1.100.data.<..
..

Voice surveillance 51

..

..

..

..

................................$.......0.3.'.....!. .*.....$...
------------------------------84989e398b28
Content-Disposition: form-data; name="transcript"; filename="tra
nscript.txt"
Content-Type: text/plain

{
 "allUtterances": [{
 "utterances": [{
 "SpeakerId": 0,
 "Utterance": "Hello"
 }, {
 "SpeakerId": 1,
 "Utterance": "Hiebert boss Mister mac was calling"
 }, {
 "SpeakerId": 2,
 "Utterance": "Hey Bob how are you"
 }, {
 "SpeakerId": 3,
 "Utterance": "How's the wife"
 }],
 "utteranceStart": 0.83,
 "utteranceEnd": 7.86,
 "utteranceConfidence": 0.7305149015323721
 }, {
 "utterances": [{
 "SpeakerId": 1,
 "Utterance": "She was asking about your day"
 }, {
 "SpeakerId": 2,
 "Utterance": "Ask"
 }, {
 "SpeakerId": 1,
 "Utterance": "You anyway came across some interesting research
about cement company"
 }],
 "utteranceStart": 7.86,
 "utteranceEnd": 14.91,
 "utteranceConfidence": 0.6774061718072295
 }, {
 "utterances": [{
 "SpeakerId": 1,
 "Utterance": "Store very good money get into one discuss with
you any interest"
 }],
 "utteranceStart": 14.93,
 "utteranceEnd": 20.25,
 "utteranceConfidence": 0.5302127616382294
 }, {
 "utterances": [{
 "SpeakerId": 2,
 "Utterance": "Sure you want to launch we can talking details on"
 }],
 "utteranceStart": 20.26,
 "utteranceEnd": 24.95,
 "utteranceConfidence": 0.7640036944982442
 }, {
 "utterances": [{
 "SpeakerId": 1,
 "Utterance": "Sure we can go for lunch at noon today"
 }],

52 IBM Surveillance Insight for Financial Services Version 2.0.2 : IBM Surveillance Insight for Financial Services
Solution Guide

 "utteranceStart": 24.98,
 "utteranceEnd": 27.07,
 "utteranceConfidence": 0.9037086843769477
 }]
}

------------------------------84989e398b28--

Data retrieve REST API service

The Data Retrieve REST service is primarily used by the UI to retrieve voice metadata, the URL of the
converted audio file (in WAV format), and the voice transcript from HDFS.

The Data retrieve REST service accepts a communication ID. For a given communication ID, the service
fetches the available voice metadata, the voice transcript, and the URL of the converted audio file from
HDFS and sends a JSON response to the caller.

The service response JSON data contains:

1. Voice metadata under the field "metadata".
2. The field attribute "audiourl" contains the URL for the audio file.
3. Voice transcript under the field attribute "transcript".

A sample Data Retrieve service multipart response is shown below:

{
 "metadata": {
 "Initiator": {
 "ContactID": "(+1)-204-353-7282",
 "Name": "Chris Brown",
 "DeviceID": "dev004",
 "CallStartTimeStamp": "2017-04-13 11:18:20",
 "CallEndTimeStamp": "2017-04-13 11:19:26"
 },
 "Participants": [
 {
 "ContactID": "(+1)-687-225-8261",
 "Name": "Jaxson Armstrong",
 "DeviceID": "dev002",
 "CallStartTimeStamp": "2017-04-13 11:18:20",
 "CallEndTimeStamp": "2017-04-13 11:19:26"
 },
 {
 "ContactID": "(+1)-395-309-9915",
 "Name": "Henry Bailey",
 "DeviceID": "dev003",
 "CallStartTimeStamp": "2017-04-13 11:18:20",
 "CallEndTimeStamp": "2017-04-13 11:19:26"
 }
],
 "ContactIDType": "phone",
 "AudioFileName": "File_2.wav",
 "CallStartTimeStamp": "2017-04-13 11:18:20",
 "CallEndTimeStamp": "2017-04-13 11:19:26",
 "GlobalCommId": "gcid100906524390995"
 },
 "audiourl":"/SIFSVoiceDataService/voice/v1/2017-04-13/
c1cd03c1869f73b079ec6e151ba89d04c6b7452f/audio",
"transcript": [
 {
 "Speech": "I",
 "endtime": 22.25,
 "starttime": 2.19,
 "Speaker": "Speaker 0"

Voice surveillance 53

 },
 {
 "Speech": "This is Bob joy wells on the call",
 "endtime": 22.25,
 "starttime": 2.19,
 "Speaker": "Speaker 1"
 },
 {
 "Speech": "Merry here",
 "endtime": 22.25,
 "starttime": 2.19,
 "Speaker": "Speaker 0"
 },

 {
 "Speech": "Merry one of you want to take us off strategy",
 "endtime": 35.96,
 "starttime": 22.57,
 "Speaker": "Speaker 1"
 },
 {
 "Speech": "Sure about Stacy I'll play small part orders increase
the protocol by ratio for the strike price of twenty two with an expiration
date of five thirty one",
 "endtime": 35.96,
 "starttime": 22.57,
 "Speaker": "Speaker 2"
 }

]
}

Audio Streaming REST API Service

The Audio Streaming API is used by the UI to allow audio playback of voice evidences in an alert context.
The resultant URL can be played through a standard web browser or an audio player that supports audio
streaming.

The JSON response of the Data retrieve REST service contains this API URL under the field "audiourl".

Voice Surveillance Toolkit metadata schema
Table 11: Metadata schema

Field name Description

Initiator.ContactID Call initiator’s Contact ID. This can be a phone
number or a login name.

Initiator.Name Call initiator’s name

Initiator.DeviceID Device ID from which the call was initiated by
initiator.

Initiator.CallStartTimeStamp The date and time when the call is initiated by the
initiator. The value should be in YYYY-MM-DD
HH:MM:SS format.

Initiator.CallEndTimeStamp The date and time when the call is left by initiator.
The value should be in YYYY-MM-DD HH:MM:SS
format.

54 IBM Surveillance Insight for Financial Services Version 2.0.2 : IBM Surveillance Insight for Financial Services
Solution Guide

Table 11: Metadata schema (continued)

Field name Description

Participants.ContactID Participant’s Contact ID. This can be a phone
number, IP address, or a login name.

Participants.Name Name of the participant.

Participants.DeviceID Device ID from which the call was initiated by
Participant.

Participants.CallStartTimeStamp The date and time when the call is joined by the
participant. The value should be in YYYY-MM-DD
HH:MM:SS format.

Participants.CallEndTimeStamp The date and time when the call is left by
participant. The value should be in YYYY-MM-DD
HH:MM:SS format.

ContactIDType Allowed values are "loginname" and "phone". The
value "phone" is set when a user is identified by
their phone number. The value "loginname" is set
when a user is identified by their login names, for
example, while they are using Cloud9 Trader.

AudioFileName Audio file name that needs to be processed.

CallStartTimeStamp The date and time when the call is initiated. The
value should be in YYYY-MM-DD HH:MM:SS format.

CallEndTimeStamp The date and time when the call is ended. The
value should be in YYYY-MM-DD HH:MM:SS format.

GlobalCommId Unique global communication ID attached to this
audio.

WAV adaptor processing
Voice communications in WAV format are processed through different adaptors, Kafka processes, and
Streams jobs.

IBM Surveillance Insight for Financial Services processes WAV files based on the metadata trigger that is
received through pre-defined Kafka topics. The WAV adaptor reads the data from the Kafka topic,
decrypts the Kafka message, parses it, and fetches the voice audio file location. The audio content is then
passed to the SpeechToText (S2T) toolkit operator for translation. All of the utterances and the speaker
diarization are aggregated. The aggregated conversation text is then converted to a communication object
and then published to the Kafka topic.

Also, if an export URL is configured, the voice artifacts—the metadata, utterances, and the audio binary—
are sent to the export service.

The export capability allows you to export individual voice artifacts to different endpoints. You can specify
the following parameters when you submit the Streams job:

• To export all of the voice-related artifacts to the HDFS on hostname1:

EXPORTALLURL=https://<hostname1>:<port>/SIFSVoiceDataService/voice/v1/
export

Voice surveillance 55

• To export the voice metadata-related artifacts to the HDFS on hostname2:

EXPORTMETADATAURL=https://<hostname2>:<port>/SIFSVoiceDataService/voice/v1/
export

• To export the voice metadata and transcript to the HDFS on hostname3:

HDFS.EXPORTTRANSCRIPTURL=https://<hostname3>:<port>/SIFSVoiceDataService/
voice/v1/export

• To export the voice metadata and audio data to the HDFS on hostname2 and hostname4:

EXPORTAUDIOURL=https://<host2>:<port>/SIFSVoiceDataService/voice/v1/
export;https://<hostname4>:<port>/SIFSVoiceDataService/voice/v1/export

Figure 27: WAV

PCAP format processing
Processing voice data from network involves speech extraction from network packets and IPC-based call
metadata extraction.

Networktap job

This job sniffs the network packets from the defined network interface, and then takes the received
packets and transfers them to the downstream job. The Standalone job connects to the network interface
card by using the IBM Streams Network Toolkit’s PacketLiveSource operator. This operator puts the
network interface into promiscuous mode to enable gathering of all network packets. The packets are
then forwarded to the downstream PCAP Adaptor job by using the IBM Streams Standard Toolkit’s
TcpSink operator.

Figure 28: Networktap job

PCAP Adaptor job

The PCAP Adaptor job parses PCAP data from a network port. The raw packet data is also exported to the
IPC job. Packets are filtered based on IP addresses, subnets, or by login names. The filtered RTP packets
are processed and all of the audio packet data that is collected for a given call is exported to the
RouteSpeech job. Certain call attributes, such as the callid, channel_id, source, and destination port, are
exported to the CorrelateCallMetadata job.

Figure 29: PCAP Adaptor job

56 IBM Surveillance Insight for Financial Services Version 2.0.2 : IBM Surveillance Insight for Financial Services
Solution Guide

IPC job

The IPC metadata extraction jobs consists of two SPLs: IPC and CorrelateCallMetadata. The IPC job
receives raw socket data from the PCAP Adaptor job. It identifies the SIP Invite messages of new user
logins to their turret devices. It then parses the XML data packets to fetch the device ID and session ID
that corresponds to the handsets and stores it in an internal monitored list. This is done to avoid
monitoring audio data from speaker ports. After the SIP ACK messages are received, it verifies that the
device ID from the ACK is present in the monitored list. It then emits the device ID and the destination
port.

Figure 30: IPC job

CorrelateCallMetadata job

The CorrelateCallMetadata job uses Bluewave’s (BW) LogonSession API to prepare a list of all of the users
who are logged on to the voice network. From the LogonSession response XML, certain attributes about
the users, such as their IP address, loginname, userid, zoneid, zonename, loginname, firstname,
lastname, and emailid are extracted and cached. Subsequently, for users who log in , their corresponding
device IDs are sent by the IPC job. For the incoming device ID, the LogonSession details are fetched from
the BW API and the user list in the cache is updated.

Any access to BW needs an authentication token. After an authentication token is created, it is refreshed
at regular intervals. Also at regular intervals, a call is made to get the communication history for the last 5
seconds. This is compared with the call records that are extracted from the RTP packets based on the
loginname and call start and end times. If the call timing of the communication history record and of RTP
packets are within a tolerable deviation, then that communication history record is assigned as the
metadata record for the call that is identified in the RTP packets. The identified metadata record is then
exported to the RouteSpeech job.

Figure 31: CorrelateCallMetadata job

RouteSpeech job

The RouteSpeech receives audio packets and metadata as tuples. In an organization’s voice network,
calls emanate from different departments and each department may have vocabulary that is specific to its
business. As a result, calls must be routed through specific Speech to Text language models that are
based on the source of the call, for example, calls from the Foreign Exchange department might be routed
through a S2T language model that was developed specifically for Foreign Exchange whereas calls from
the Equity team are routed through a S2T language model that was developed for Equity. This allows a
better accuracy rate in speech recognition. Based on the department of the loginname that is associated
with the call, the raw speech files are created in a directory that is assigned to a route. Metadata tuples
are updated with the partyid and exported to ProcessMetadata job.

Voice surveillance 57

Figure 32: RouteSpeech job

PCAPSpeech job

This job contains the SpeechToText operators for processing audio data from the raw speech files that are
created in the RouteSpeech job. After the S2T is complete, it checks if metadata for the concerned call is
available. If metadata is available, it is correlated with the converted text from the call and a CommData
object is created and published to Kafka. Also, if an export URL is configured, the voice artifacts—the
metadata, utterances, and the audio binary—are sent to the export service. The default export service
persists the artifacts to the HDFS file system. If the metadata is not available, the audio binary and
utterances are persisted to HDFS.

Figure 33: PCAPSpeech job

ProcessMetadata job

The ProcessMetadata job consumes the metadata tuples that are sent by the RouteSpeech job. It checks
if transcripts for the concerned call is available. If a transcript is available, it is correlated with metadata
and a CommData object is created and published to Kafka. Also, if an export URL is configured, the voice
artifacts—the metadata, utterances, and the audio binary—are sent to the export service. The default
export service persists the artifacts to the HDFS file system. If a transcript for the call is not available, the
metadata is persisted to HDFS.

Figure 34: ProcessMetadata job

58 IBM Surveillance Insight for Financial Services Version 2.0.2 : IBM Surveillance Insight for Financial Services
Solution Guide

Chapter 6. Surveillance Insight data schemas
The Surveillance Insight for Financial Services database schema holds data for the major entities of the
business domain.

The major entities are:

• Party

For more information, see “Party view” on page 60.
• Communication

For more information, see “Communication view” on page 61.
• Alert

For more information, see “Alert view” on page 64.
• Trade

For more information, see “Trade view” on page 66.

The following diagram shows the components that update the key sets of tables.

Figure 35: Components that update key tables

© Copyright IBM Corp. 2016, 2017 59

Party view

Figure 36: Party view schema

Table name Description Populated by

Party_Master Stores basic party details.
Reference ID refers to id in the
core systems. TraderId contains
mapping to the id that the party
uses for trading.

Populated during initial data load
and periodically kept in sync with
the customer’s core master data
system.

Party Risk Score Stores overall risk score for the
party based on the party’s
current and past alert history.

Scheduled Surveillance Insight
job that runs daily.

Party Behavior Profile Stores date-wise scores for
various behavior parameters of
the party.

Surveillance Insight Ecomm Job
daily.

Party Profile Stores date wise, risk indicator
wise statistics for every party.

Surveillance Insight Ecomm Job
that updates count field for every
communication that is analyzed.
Updates the other fields on a
configurable frequency.

Enterprise Profile This table maintains the Mean
and Std Deviation for each date
and Risk Indicator combination.
The mean and standard deviation
is for the population. For
example, the values are
computed using data for all
parties.

This table is populated by a Spark
job that is based on the
frequency at which the Spark job
is run. The job reads the date
parameter and, for that date,
populates the Enterprise profile
table. The solution expects to
populate the data in the
Enterprise profile only once for a
specific date.

60 IBM Surveillance Insight for Financial Services Version 2.0.2 : IBM Surveillance Insight for Financial Services
Solution Guide

Table name Description Populated by

Party Contact Point Contains email, voice, and chat
contact information for each
party.

Populated during the initial data
load and periodically kept in sync
with the customer’s core master
data system.

Party Profit Profit made by the party from
trades.

Populated by the spoofing use
case implementation.

Party Job Role Master Master table for party job roles. Populated during the initial data
load and periodically kept in sync
with the customer’s core master
data system.

Comm Type Master Master table for communication
types such email, voice, and chat.

Populated during the initial data
load and periodically kept in sync
with the customer’s core master
data system.

Location Master Master table with location details
of the parties.

Populated during the initial data
load and periodically kept in sync
with the customer’s core master
data system.

Party_Ext Attr Table to allow extension of party
attributes that are not already
available in the schema.

Populated during
implementation. Not used by the
provided use cases.

Communication view

Figure 37: Communication view schema

Surveillance Insight data schemas 61

Table name Description Populated by

Communication Core table that stores extracted
metadata from electronic
communications (e-comm). It
does not store the actual content
of the email or voice
communication. It stores data
such as initiator, participants,
associated tags.

This table is populated by the
SIFS e-comm streams that
analyze e-comm data as each
communication comes in.

Comm Involved Party Rel Stores parties that are involved in
a communication.

This table is populated by the
SIFS e-comm streams that
analyze the e-comm data as each
communication comes in.

Comm Entities Stores entities that are extracted
from electronic communications.

Populated by the SIFS e-comm
components during e-comm
analysis.

Comm Entities Rel Stores relationships between
entities that are extracted from
the electronic communications.

Populated by the SIFS e-comm
components during e-comm
analysis.

Comm Policy This table maintains the policy
details registered in Surveillance
Insight. The table has data for
both system and role level
policies.

Populated through the Policy
REST service. The service
supports create, update, activate,
and deactivate features.

Policy Role Rel This table maintains the policy to
role mapping. For role level
policies, the relationship for
policy and job role is stored in
this table.

Populated when the policy is
created in the system by using
the REST service. Updates to this
table are not supported. It is
recommended to create a new
policy if there any changes in
role.

Feature Master This table contains a master list
of all of the features that are
supported by Surveillance Insight
for Financial Services.

Master table. Populated during
Surveillance Insight product
setup.

Comm Feature This table contains the feature
JSON for each communication
that is processed by Surveillance
Insight. The
CORE_FEATURES_JSON column
contains the JSON for all of the
features in the Feature Master.
For metadata, the JSON is stored
in the
META_DATA_FEATURES_JSON
column. The table also provides a
provision to store custom feature
values in the
CUSTOM_FEATURES_JSON
column.

This table is populated for every
communication that is processed
by Surveillance Insight for
Financial Services.

62 IBM Surveillance Insight for Financial Services Version 2.0.2 : IBM Surveillance Insight for Financial Services
Solution Guide

Table name Description Populated by

Comm Type Master Master table that stores the
different communication types
such as voice, email, and chat.

Populated with the supported
communication types during
product installation.

Channel Master Master table that stores the
different communication
channels.

Populated with the supported
channel types during product
installation. The channels are e-
comm and voice.

Entity Type Master Master table for the type of
entities that are extracted from
the electronic communications.

Populated with the supported
types during product installation.
The types are people,
organization, and ticker.

Entity Rel Type Master Master table for types of
relationships that are possible
between entities that are
extracted from the electronic
communications.

Populated with the supported
types during product installation.
The types are Mentions and
Works For.

Comm Ext Attr Extension table to store
additional communication
attributes during customer
implementation.

NOTES Stores all of the notes that are
created by the case investigators
for the alerts.

Surveillance Insight Note service
populates this table when
triggered from the Surveillance
Insight front-end.

OBJECT_TYPE_MASTER Master table for storing different
type of objects against which
notes are added.

The table is populated by the
communication and alert objects.

VOICE_COMM_EDIT_FEATURES The table stores all of the
annotations that are created
against voice communications.

The table is populated when
annotations are created or
removed. It also populates when
a user starts and finishes editing
a voice communication.

REVIEW_STATUS_TYPE_MASTER Master table for storing the
different types of review statuses
for a voice communication.

The table is populated by the in-
progress and completed
statuses.

Surveillance Insight data schemas 63

Alert view

Figure 38: Alert view schema

Table name Description Populated by

Alert Core table that stores the alert
data.

This table is populated by any
use case that creates an alert.
The createAlert REST service
must be used to populate this
table.

Risk Evidence Core table that stores each of the
risk evidences that are identified
during the data analysis.

This table is populated by any
use case that creates risk
evidences. The createEvidence
REST service can be used to
populate this table.

Alert Evidence Rel Links an alert to multiple
evidences and evidences to
alerts.

This table is populated by any
use case that creates an alert.
The createAlert REST service
must be used to populate this
table.

Alert Involved Party Rel Links the parties who are
involved in an alert with the alert
itself.

This table is populated by any
use case that creates an alert.
The createAlert REST service
must be used to populate this
table.

Alert Risk Indicator Score Identifies the risk indicators and
corresponding scores that are
associated with an alert.

This table is populated by any
use case that creates an alert.
The createAlert REST service
must be used to populate this
table.

64 IBM Surveillance Insight for Financial Services Version 2.0.2 : IBM Surveillance Insight for Financial Services
Solution Guide

Table name Description Populated by

Alert Ticker Rel Links the tickers that are
associated with an alert to the
alert itself.

This table is populated by any
use case that creates an alert.
The createAlert REST service
must be used to populate this
table.

NOTES Stores all of the notes that are
created by the case investigators
for the alerts.

Surveillance Insight Note service
populates this table when
triggered from the Surveillance
Insight front-end.

OBJECT_TYPE_MASTER Master table for storing different
type of objects against which
notes are added.

The table is populated by the
communication and alert objects.

Evidence Involved Party Rel Links the parties that are involved
in a risk evidence to the evidence
itself.

This table is populated by any
use case that creates risk
evidences. The createEvidence
REST service can be used to
populate this table.

Evidence Ticker Rel Links any tickers that are
associated with an evidence to
the evidences itself.

This table is populated by any
use case that creates risk
evidences. The createEvidence
REST service can be used to
populate this table.

Alert Type Master Master table for the various types
of alerts that can be created by
the use cases.

Populated with certain alert
types during product installation.
More types can be created when
you create new use cases.

Alert Source Master Master table for source systems
that can generate alerts.

Populated with one alert source
for Surveillance Insight during
product installation. More
sources can be created,
depending on the requirements.

Risk Indicator Master Master table for risk indicators
that are generated by the use
cases.

Populated with certain indicators
for e-comm and trade risk during
product installation. More
indicators can be created,
depending on the requirements.

Risk Evidence Type Master Master table for evidence types,
such as trade, email, and voice.

Populated with a certain type
during product installation. More
types can be created, depending
on the requirements.

Risk Model Master Master table for the risk models
that are used for generating the
reasoning graph.

Populated during the product
installation with following
models: pump-and-dump,
spoofing, and party risk behavior.

More models can be populated,
depending on the requirements
of new use cases.

Surveillance Insight data schemas 65

Table name Description Populated by

Risk Model Type Master Master table for the types of risk
models that are supported.

Populated during the product
installation with rule and
Bayesian network types.

Comm Ticker Rel Links tickers found on e-
communication to the
communication.

Populated by the e-comm
component for each e-
communication that is analyzed.

Alert Ext Attr This table allows for the
extension of alert attributes.

Not used by Surveillance Insight
for Financial Services. This table
is meant for customer
implementations, if required.

Trade view

Figure 39: Trade view schema

Table name Description Populated by

Ticker Master table that stores basic
ticker information.

This table is populated during the
initial data load and whenever
new tickers are found in the trade
data.

Trade Sample This table contains samples of
trade data from the market. The
trades that go into this table
depend on the specific use case.
The trades are primarily
evidences of some trade risk that
is detected. Typically, these
trades are sampled from the
market data that is stored in
Hadoop. They are stored here for
easy access by the user interface
layer.

Currently, the spoofing and
pump-and-dump use cases
populate this table whenever a
spoofing alert is identified.

66 IBM Surveillance Insight for Financial Services Version 2.0.2 : IBM Surveillance Insight for Financial Services
Solution Guide

Table name Description Populated by

Quote Sample This table contains samples of
quote data for certain durations
of time. The quotes that go into
this table depend on the specific
use case. The quotes are
evidences of some kind of risk
that is identified by the specific
use case. These quotes are
sampled from the market data
and stored in Hadoop. They are
stored in this table for easy
access by the user interface
layer.

Currently, the spoofing use case
populates this table whenever a
spoofing alert is created. The
sampled quote is the max (bid
price) and min (offer price) for
every time second.

Order This table contains orders that
need to be displayed as evidence
for some alert in the front end.
The contents are copied from the
market data in Hadoop. The
specific dates for which the data
is populated depends on the
alert.

Currently, the spoofing use case
populates this table whenever a
spoofing alert is identified.

Execution This table contains orders that
need to be displayed as evidence
for some alert in the front end.
The contents are copied from the
market data in Hadoop. The
specific dates for which the data
is populated depends on the
alert.

Currently, the spoofing use case
populates this table whenever a
spoofing alert is identified.

Pump Dump Stage This table contains the pump-
and-dump stage for each ticker
that shows pump or dump
evidence.

This table is populated by the
pump-and-dump use case
implementation.

Trade Summary This table contains the ticker
summary for each date for tickers
that show pump or dump
evidence.

This table is populated by the
pump-and-dump use case
implementation.

Top5Traders This table contains the top five
traders for buy and sell sides for
each ticker that shows pump or
dump evidence. This table is
populated daily.

This table is populated by the
pump-and-dump use case
implementation.

Intra Day Trade Summary This table is meant to be used for
the Trade charts in the trade use
cases. This table contains
summary data for trade/
transaction data on a daily basis.

This table is populated by the
Trade Evidence Persistence
Spark job as and when it receives
the risk evidence from the use
case implementation.

Surveillance Insight data schemas 67

Table name Description Populated by

Trade Evidence This table contains evidences for
specific type like order, trade,
execution etc.,. that needs to be
shown in the trade charts for
trade use cases. This table, along
with the evidence_trade_ rel
table allow linking the evdences
to the alerts through the
evidence ids

This table is populated by the
Trade Evidence Persistence
Spark job as and when it receives
the risk evidence from the use
case implementation.

Evidence Trade Rel This table links the trade
evidences to the risk evidences
and thus indirectly link them to
the alert. This table helps the UI
services figure out what trade
evidences are relevant for a
specific alert.

This table is populated by the
Trade Evidence Persistence
Spark job as and when it receives
the risk evidence from the use
case implementation.

FX Transaction This table contains the
transaction details for forex
transactions. This table is
synonymous to the Trade
Evidence table except that it has
additional fields that are specific
to forex.

This table is populated by the
Trade Evidence Persistence
Spark job as and when it receives
the risk evidence from the use
case implementation.

68 IBM Surveillance Insight for Financial Services Version 2.0.2 : IBM Surveillance Insight for Financial Services
Solution Guide

Chapter 7. NLP libraries
The solution offers prebuilt custom libraries for some of the Natural Language Processing (NLP)
capabilities

The following pre-built libraries are provided:

• Emotion Detection library
• Concept Mapper library
• Document Classifier library

The solution uses Open source frameworks / Libraries such as Apache UIMA (Unstructured Information
Management Application) and MALLET (MAchine Learning for LanguagE Toolkit).

Note: The libraries come with dictionaries and rules that can be customized.

Emotion Detection library
The Emotion Detection library uses Apache UIMA Ruta (RUle based Text Annotation) and a custom
scoring model to detect emotions and sentiment in unstructured data, such as text from emails, instant
messages, and voice transcripts.

The library detects the following emotions from the text:

• Anger
• Disgust
• Joy
• Sadness
• Fear

It assigns a score from 0-1 for each emotion. A higher value indicates a higher level of the emotion in the
content. For example, an Anger score of 0.8 indicates that the anger is likely to be present in the text. A
score of 0.5 or less indicates that anger is less likely to be present.

The library also detects the sentiment and indicates it as positive, negative, or neutral with a score of 0-1.
For example, a positive sentiment score is 0.8 indicates that positive sentiment is likely expressed in the
text. A score of 0.5 or less indicates that positive sentiment is less likely expressed in the text. The
sentiment score is derived from the emotions present in the text.

How the library works

The solution uses dictionaries of emotions and rules to detect the emotions in text and a scoring model to
score the emotions.

The dictionaries are contained in the anger_dict.txt, disgust_dict.txt, fear_dict.txt,
joy_dict.txt, and sad_dict.txt files. Each dictionary is a collection of words that represent emotion
in the text.

The rule file is based on Ruta Framework and it helps the system to annotate the text based on the
dictionary lookup. For example, it annotates all the text that is found in the anger dictionary as Anger
Terms. The position of this term is also captured. All the inputs are fed into the Scoring model to detect
the sentence level emotions and also the document level emotion. The document level emotion is
returned as the overall emotion at the document level.

The following code is an example of a rule definition.

PACKAGE com.ibm.sifs.analytics.emotion.types;

© Copyright IBM Corp. 2016, 2017 69

https://uima.apache.org/
http://mallet.cs.umass.edu/

Sample Rule
load dictionary
WORDLIST anger_dict = 'anger_dict.txt';
WORDLIST joy_dict = 'joy_dict.txt';

Declare type definitions
DECLARE Anger;
DECLARE Joy;

Detect sentence
DECLARE Sentence;
PERIOD #{-> MARK(Sentence)} PERIOD;

MARKFAST(Anger, anger_dict, true);
MARKFAST(Joy, joy_dict, true);
Same for other emotions

The emotion detection dictionary

Emotion detection is a java based library and is available as JAR. Currently, it is used in the Real-time
Analytics component to detect the emotions in real time and score the emotions in the incoming
documents.

As shown in the following diagram, it offers two functions:

• Initialize, which initializes the Emotion library by loading the dictionary and the rules. This function
needs to be called only once, and must be started when dictionaries or rules are changed.

• Detect Emotion, which takes text as input and returns a JSON string as a response.

Figure 40: Emotion detection library

Definitions

public static void initialize(String dictionaryPath, String rulePath) throws
Exception

public static String detectEmotion(String text)

Sample input

The investment you made with ABC company stocks are doing pretty good. It
has increased
50 times. I wanted to check with you to see if we can revisit your
investment portfolios for better

70 IBM Surveillance Insight for Financial Services Version 2.0.2 : IBM Surveillance Insight for Financial Services
Solution Guide

investments and make more profit. Please do check the following options and
let me know. I can
visit you at your office or home or at your preferred place and we can
discuss on new business.
Market is doing pretty good. If you can make right investments now, it can
give good returns on
your retirement.

Sample response

{
 "sentiment": {
 "score": 1,
 "type": "positive"
 },
 "emotions": {
 "joy": "1.0",
 "sad": "0.0",
 "disgust": "0.0",
 "anger": "0.0",
 "fear": "0.0"
 },
 "keywords": {
 "negative": [],
 "joy": ["pretty", "retirement", "good", "profit"],
 "sad": ["retirement"],
 "disgust": [],
 "anger": [],
 "fear": ["retirement"]
 },
 "status": {
 "code": "200",
 "message": "success"
 }
}

Starting the module

// Initialize Module (ONLY ONCE)
EmotionAnalyzer.initialize(<path to dictionaries>, <path to rule file>);

// Invoke the library (For every incoming document)
String resultJSON = EmotionAnalyzer.detectEmotion(text);

Note: Errors or exceptions are returned in the JSON response under the Status element with a code of
500 and an appropriate message, as shown in the following example.

"status": {
 "code": "200",
 "message": "success"
 }

Concept Mapper library
The Concept Mapper library uses Apache UIMA Ruta (RUle based Text Annotation) to detect the concepts
in unstructured text such as emails, instant messages, or voice transcripts.

The library detects the following concepts from the text.

• Tickers—Stock Symbol

NLP libraries 71

• Recruit Victims—Evidence of a trader who is trying to get clients to invest in a specific ticker. This activity
is indicated as "Recruit Victims."

• Recruit Conspirators—Evidence of a trader who is collaborating with other traders to conduct a market
abuse activity such as "pump/dump." This activity is indicated as "Recruit Conspirators" in the
surveillance context.

Note: If there is more than one ticker in the text, all the tickers are extracted and returned as a comma-
separated string.

How the library works

The solution uses a dictionary of tickers, keywords, or phrases that represent Recruit Victims and Recruit
Conspirators, and concepts and rules to detect the concepts in the text. The dictionaries include the
recruit_conspirators.txt, recruit_victims_dict.txt, and tickers_dict.txt files. Each
dictionary is a collection of words that represent different concepts in the text.

The rule file is based on Ruta Framework and it helps the system to annotate the text based on the
dictionary lookup. For example, it annotates all the text that is found in the Recruit Victims dictionary as
Recruit Victims Terms. The position of this term is also captured.

The following code is an example of a rule.

PACKAGE com.ibm.sifs.analytics.conceptmapper.types;

Sample Rule
Load Dictionary
WORDLIST tickers_dict = 'tickers_dict.txt';
WORDLIST recruit_victims_dict = 'recruit_victims_dict.txt';
WORDLIST recruit_conspirators_dict = 'recruit_conspirators.txt';
WORDLIST negative_dict = 'negative_dict.txt';

Type definitions
DECLARE Ticker;
DECLARE RecruitConspirators;
DECLARE RecruitVictims;
DECLARE Negative;

Annotate/Identify the concepts
MARKFAST(Negative, negative_dict, true);
MARKFAST(Ticker, tickers_dict, false);
MARKFAST(RecruitConspirators, recruit_conspirators_dict, true);
MARKFAST(RecruitVictims, recruit_victims_dict, true);

The Concept Mapper dictionary

Concept Mapper is a java-based library and is available as JAR. Currently, it is used in the Real-time
analytics component to detect the concepts in real time from the incoming text. As shown in the following
diagram, it offers the following functions:

• Initialize, which initializes the library by loading the dictionary and the rules. This function needs to be
called only once, and must be started when dictionaries or rules are changed.

• Detect concepts, which take text as input and returns a JSON string as a response.

72 IBM Surveillance Insight for Financial Services Version 2.0.2 : IBM Surveillance Insight for Financial Services
Solution Guide

Figure 41: Concept mapper library

Definitions

public static void initialize(String dictionaryPath, String rulePath) throws
Exception

public static String detectConcepts(String text)

Sample input

I wanted to inform you about an opportunity brought to us by an insider, Mr.
Anderson,
from ABC Corporation. They specialize in manufacturing drill bits for deep-
sea oil rigs. Mr. Anderson
owns about 35% of the float and would like us to help increase the price of
his company’s stock price.
If we can help increase the price of the stock by 150%, we would be eligible
for a substantial fee and
also 1.5% of the profit Mr. Anderson will make disposing the shares at the
elevated price. Would you be
interested in joining our group in helping Mr. Anderson?

Sample response

{
 "concepts": {
 "recruitconspirators": true,
 "tickers": ["ABC"],
 "recruitvictims": false
 },
 "status": {
 "code": "200",
 "message": "success"
 }
}

Starting the module

// Initialize Module (ONLY ONCE)
ConceptMapper.initialize(<path to dictionaries>, <path to rule file>);

NLP libraries 73

// Invoke the library (For every incoming document)
String resultJSON = ConceptMapper.detectConcepts(text);

Note: Errors or exceptions are returned in the JSON response under the Status element with a code of
500 and an appropriate message, as shown in the following example.

"status": {
 "code": "200",
 "message": "success"
 }

Classifier library
The Classifier library uses MALLET to classify documents into predefined classes and associate
probability scores to the classes.

The library can be used to define the following classifications:

• Confidential / Non-confidential documents
• Business / Personal
• News / Announcement / Promotional
• Trading / Non-Trading

How the library works

The Classifier library uses a client/server model. The server library is used to train the model and for the
export of the classifier models. The client library uses the classifier model and to classify the incoming
documents in real time.

The Classifier library

Classifier is a java based library and is available as JAR. Currently, it is used in the Real-time analytics
component to detect the concepts in real time from the incoming text. As shown in the following diagram,
it offers the following functions:

• Initialize, which initializes the library by loading the prebuilt classification models. The library can be
initialized with multiple classifiers. This function needs to be called only one time, and must be started
when dictionaries or rules are changed.

• Classify docs, which take text as input and returns a JSON string as a response.

Sample input

I wanted to inform you about an opportunity brought to us by an insider, Mr.
Anderson,
from ABC Corporation. They specialize in manufacturing drill bits for deep-
sea oil rigs. Mr. Anderson
owns about 35% of the float and would like us to help increase the price of
his company’s stock price.
If we can help increase the price of the stock by 150%, we would be eligible
for a substantial fee and
also 1.5% of the profit Mr. Anderson will make disposing the shares at the
elevated price. Would you
be interested in joining our group in helping Mr. Anderson?

Sample response

{
 "classes": [{

74 IBM Surveillance Insight for Financial Services Version 2.0.2 : IBM Surveillance Insight for Financial Services
Solution Guide

 "confidence": 0.22,
 "class_name": "Confidential"
 }, {
 "confidence": 0.77,
 "class_name": "Non-Confidential"
 }],
 "top_class": "Non-Confidential",
 "status": {
 "code": "200",
 "message": "success"
 }
}

Server-side library

The server-side library is RESTful and exposes APIs to operate with the Classifier model. It offers the
following services.

Table 12: Server-side library

Method URL Input Output

POST /text/v1/classifiers JASON Payload JSON response

GET /text/v1/classifiers JSON response

GET /text/v1/classifiers/
{classifierid}

JSON response

DELETE /text/v1/classifiers/
{classifierid}

JSON response

POST /text/v1/classifiers/
{classifierid}/export

Query param: Export
model path

JSON response
Exported Model

Service details

1. Create classifier

Table 13: Create classifier

Method URL Input Output

POST /text/v1/classifiers JASON Payload JSON response

The service allows users to create and train any number of classifiers. It also allows users to export the
trained model to use it from the client side, for example, by using a CURL command to try the POST:

curl -k -H 'Content-Type:application/json' -X POST --data-binary
@payload.json
 http://localhost:9080/analytics/text/v1/classifiers

The payload provides details, such as the Classifier name and training data folders for each class in the
classifier. The documents need to be available in the server. Currently, the library does not support
uploading of training documents.

Note: If the existing classifier name is provided, the classifier overrides it.

The following code is an example JSON payload:

{
 "name":"confidential",
 "training-data":[
 {"class":"confidential",

NLP libraries 75

 "trainingdatafolder":"/home/sifs/training_data/
confidential"},
 {"class":"non-confidential",
 "trainingdatafolder":"/home/sifs/training_data/non-
confidential"}
]
}

The following code is an example response:

{
 "status": {
 "message": "Successfully created Classifier - confidential",
 "status": "200"
 }
}

2. Get all classifiers

The service lists the available classifiers in the system.

Table 14: Get all classifiers

Method URL Input Output

POST /text/v1/classifiers JSON response

The following code is an example CURL command:

curl -k -H 'Content-Type:application/json'
http://localhost:9080/analytics/text/v1/classifiers

The following code is an example response:

{
 "classifiers": ["confidential"],
 "status": {
 "message": "Success",
 "code": "200"
 }
}

3. Get details on a classifier

The service retrieves the details of the requested classifier.

Table 15: Get details on a classifier

Method URL Input Output

GET /text/v1/classifiers/
{classifierid}

JSON response

The following code is an example CURL command:

curl -k -H 'Content-Type:application/json'
http://localhost:9080/analytics/text/v1/classifiers/confidential

The following code is an example response:

{
 "classifiers": ["confidential"],
 "status": {
 "message": "Success",

76 IBM Surveillance Insight for Financial Services Version 2.0.2 : IBM Surveillance Insight for Financial Services
Solution Guide

 "code": "200"
 }
}

4. Delete Classifier

This service deletes the requested classifier from the library.

Table 16: Delete classifier

Method URL Input Output

DELETE /text/v1/classifiers/
{classifierid}

JSON response

The following code is an example CURL command:

curl -k -X DELETE http://localhost:9080/analytics/text/v1/classifiers/
confidential/

The following code is an example response:

{"status":{"message":"Classifier - confidential is successfully
deleted","code":"200"}}

5. Export Classification Model

The service exports the model file for the classifier. The model file can be used on the client side. It is a
serialized object and it can be deserialized on the client side to create the classifier instance and
classify the documents.

Table 17: Export classification model

Method URL Input Output

POST /text/v1/classifiers/
{classifierid}/export

Query param: Export
model path

JSON response,
Exported Model

The following code is an example CURL command:

curl -k -X POST
http://loext/v1/classifiers/confidential/export/?exportmodelpath=/home/
sifs/classifiers

The following code is an example response:

{
 "status": {
 "message": "Classification Model successfully exported /home/sifs/
classifiers",
 "code": "200"
 }
}

NLP libraries 77

78 IBM Surveillance Insight for Financial Services Version 2.0.2 : IBM Surveillance Insight for Financial Services
Solution Guide

Chapter 8. Inference engine
IBM Surveillance Insight for Financial Services contains an implementation of a Bayesian inference engine
that helps in deciding whether an alert needs to be created for a set of evidences available on a specific
date.

The inference engine takes the risk model (in JSON format) and the scores for each risk indicator that is
referred to by the risk model as input. The output of the engine is a JSON response that gives the scores
of the risk indicators and the conclusion of whether an alert needs to be created.

Inference engine risk model
The IBM Surveillance Insight for Financial Services inference engine risk model is generated by using the
Surveillance Design Studio.

The following code is a sample.

 "y": 132
 }, {
 "parents": [],
 "desc": "Transaction Deal Rate Anomaly",
 "lookupcode": "TXN09",
 "outcome": ["low", "medium", "high"],
 "threshold": [0.33, 0.75],
 "id": "109",
 "category": "Transaction",
 "level": 2,
 "source": "TRADE",
 "subcategory": "NO_DISPLAY",
 "name": "Transaction Deal Rate Anomaly",
 "probabilities": [0.33, 0.33, 0.33],
 "x": 440.5,
 "y": 117
 }, {
 "parents": ["109"],
 "desc": "Transaction Risk",
 "lookupcode": "TXN07",
 "outcome": ["low", "medium", "high"],
 "rules": ["RD109 == 'low'", "RD109 == 'medium'", "RD109 == 'high'"],
 "threshold": [0.33, 0.75],
 "id": "107",
 "category": "Derived",
 "level": 1,
 "source": "TRADE",
 "subcategory": "NO_DISPLAY",
 "name": "Transaction Risk",
 "probabilities": [1, 0, 0, 0, 1, 0, 0, 0, 1],
 "x": 443,
 "y": 242
 }, {
 "parents": ["105", "106"],
 "desc": "Involved Party Risk",
 "lookupcode": "TXN08",
 "outcome": ["low", "medium", "high"],
 "rules": ["RD105 == 'low' && RD106 == 'low'", "(RD105 == 'medium' &&
RD106 ==
'low') || (RD105 == 'low' && RD106 == 'medium') || (RD105 == 'medium' &&
RD106 ==
'medium') || (RD105 == 'high' && RD106 == 'low') || (RD105 == 'low' && RD106
==

© Copyright IBM Corp. 2016, 2017 79

'high')", "(RD105 == 'high' && RD106 == 'high') || (RD105 == 'high' && RD106
==
'medium') || (RD105 == 'medium' && RD106 == 'high')"],
 "threshold": [0.33, 0.75],
 "id": "108",
 "category": "Derived",
 "level": 1,
 "source": "TRADE",
 "subcategory": "NO_DISPLAY",
 "name": "Involved Party Risk",
 "probabilities": [1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0,
1, 0, 1,
0, 0, 0, 1, 0, 0, 1],
 "x": 126,
 "y": 247
 }, {
 "parents": ["107", "108"],
 "desc": "Risk",
 "lookupcode": "RD15",
 "outcome": ["low", "medium", "high"],
 "rules": ["RD107 == 'low' && RD108 == 'low'", "(RD107 == 'medium' &&
RD108 ==
'low') || (RD107 == 'low' && RD108 == 'medium') || (RD107 == 'medium' &&
RD108 ==
'medium') || (RD107 == 'high' && RD108 == 'low') || (RD107 == 'low' && RD108
==
'high')", "(RD107 == 'high' && RD108 == 'high') || (RD107 == 'high' && RD108
==
'medium') || (RD107 == 'medium' && RD108 == 'high')"],
 "threshold": [0.33, 0.75],
 "id": "15",
 "category": "Derived",
"level": 0,
 "source": "COMM",
 "subcategory": "NO_DISPLAY",
 "name": "Risk",
 "probabilities": [1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0,
1, 0, 1,
0, 0, 0, 1, 0, 0, 1],
 "x": 290,
 "y": 424
 }]
}

The content of the risk model is a network of nodes and edges. The nodes represent the different risk
indicators and the edges represent the link between the risk indicators nodes and the aggregated risk
indicator nodes.

The risk indicator look-up codes that are mentioned in the risk_indicator_master table are used to refer to
specific risk indicators.

Each node also has an X,Y co-ordinate for the placement of the node in the user interface.

If you create a new model for a use case, the model must be updated in the risk_model_master table. The
risk_model_master table contains one row per use case.

Run the inference engine
You can run the inference engine as a REST API.

POST
http://<IP>:<PORT>/analytics/models/v1/model_predict/

80 IBM Surveillance Insight for Financial Services Version 2.0.2 : IBM Surveillance Insight for Financial Services
Solution Guide

The inference engine input is a JSON that consists of the following elements:

• riskModelTrained: the trained risk model JSON
• toBeScoredData: the list of risk indicator values (current and historical if any) used for scoring

The following code is a sample JSON input:

{
 "riskModelTrained": {
 "metadata": {
 "applyDecay": true
 },
 "nodes": [{
 "lookupcode": "RD15",
 "level": 0,
 "name": "Risk",
 "threshold": [0.33, 0.75],
 "source": "Comm",
 "id": "15",
 "subcategory": "NO_DISPLAY",
 "category": "Derived",
 "probabilities": [
 [1, 1, 0.999, 1, 1, 0.999, 0.997, 0.001, 0.019],
 [0, 0, 0.001, 0, 0, 0.001, 0.003, 0.999, 0.981]
],
 "outcome": ["low", "medium", "high"],
 "parents": ["27", "26"],
 "desc": "Risk"
 }, {
 "lookupcode": "RD27",
 "level": 1,
 "name": "Comm",
 "threshold": [0.33, 0.75],
 "source": "Comm",
 "id": "27",
 "subcategory": "NO_DISPLAY",
 "category": "Derived",
 "probabilities": [
 [1, 0, 0, 0, 0, 0.001, 0, 0.002, 0.333, 0, 0, 0.001, 0, 0,
0.005, 0.001, 0.003, 0.333, 0, 0.002, 0.333, 0.001, 0.004, 0.019, 0.019,
0.333, 0.333, 0, 0, 0.002, 0, 0, 0.004, 0.002, 0.003, 0.019, 0, 0, 0.005, 0,
0.001, 0.01, 0.002, 0.019, 0.333, 0.001, 0.005, 0.333, 0.002, 0.004, 0.333,
0.333, 0.333, 0.333, 0, 0.001, 0.019, 0.001, 0.002, 0.019, 0.01, 0.333,
0.333, 0.001, 0.003, 0.019, 0.003, 0.01, 0.333, 0.019, 0.333, 0.333, 0.01,
0.01, 0.333, 0.333, 0.333, 0.333, 0.333, 0.333, 0.333],
 [0, 1, 0, 1, 1, 0.001, 0, 0.002, 0.333, 1, 1, 0.001, 1, 1,
0.005, 0.001, 0.003, 0.333, 0, 0.002, 0.333, 0.001, 0.004, 0.019, 0.019,
0.333, 0.333, 1, 1, 0.002, 1, 1, 0.004, 0.002, 0.003, 0.019, 1, 1, 0.005, 1,
0.999, 0.01, 0.002, 0.019, 0.333, 0.001, 0.005, 0.333, 0.002, 0.004, 0.333,
0.333, 0.333, 0.333, 0, 0.001, 0.019, 0.001, 0.002, 0.019, 0.01, 0.333,
0.333, 0.001, 0.003, 0.019, 0.003, 0.01, 0.333, 0.019, 0.333, 0.333, 0.01,
0.01, 0.333, 0.333, 0.333, 0.333, 0.333, 0.333, 0.333],
 [0, 0, 0.999, 0, 0, 0.998, 0.999, 0.997, 0.333, 0, 0, 0.998,
0, 0, 0.99, 0.998, 0.994, 0.333, 0.999, 0.995, 0.333, 0.998, 0.992, 0.961,
0.961, 0.333, 0.333, 0, 0, 0.997, 0, 0, 0.992, 0.996, 0.993, 0.961, 0, 0,
0.99, 0, 0.001, 0.98, 0.996, 0.961, 0.333, 0.998, 0.99, 0.333, 0.995, 0.992,
0.333, 0.333, 0.333, 0.333, 0.999, 0.998, 0.961, 0.998, 0.996, 0.961, 0.98,
0.333, 0.333, 0.998, 0.995, 0.961, 0.994, 0.98, 0.333, 0.961, 0.333, 0.333,
0.98, 0.98, 0.333, 0.333, 0.333, 0.333, 0.333, 0.333, 0.333]
],
 "outcome": ["low", "medium", "high"],
 "parents": ["25", "24", "23", "22"],
 "desc": "Risk observed from Communication data"
 }, {
 "lookupcode": "RD25",

Inference engine 81

 "level": 2,
 "name": "Efforts on Recruit Co-conspirators",
 "threshold": [0.33, 0.75],
 "source": "Comm",
 "id": "25",
 "subcategory": "NO_DISPLAY",
 "category": "Comm",
 "probabilities": [0.729, 0.258, 0.013],
 "outcome": ["low", "medium", "high"],
 "parents": [],
 "desc": "Mass communications sent by $party_name to influence co-
traders"
 }, {
 "lookupcode": "RD24",
 "level": 2,
 "name": "Efforts on Recruit Victims",
 "threshold": [0.33, 0.75],
 "source": "Comm",
 "id": "24",
 "subcategory": "NO_DISPLAY",
 "category": "Comm",
 "probabilities": [0.725, 0.263, 0.013],
 "outcome": ["low", "medium", "high"],
 "parents": [],
 "desc": "Mass communications sent by $party_name to influence
investors"
 }, {
 "lookupcode": "RD23",
 "level": 2,
 "name": "Recruit Co-conspirators",
 "threshold": [0.33, 0.75],
 "source": "Comm",
 "id": "23",
 "subcategory": "NO_DISPLAY",
 "category": "Comm",
 "probabilities": [0.726, 0.26, 0.013],
 "outcome": ["low", "medium", "high"],
 "parents": [],
 "desc": "Communication sent by $party_name to influence co-
traders"
 }, {
 "lookupcode": "RD22",
 "level": 2,
 "name": "Recruit Victims",
 "threshold": [0.33, 0.75],
 "source": "Comm",
 "id": "22",
 "subcategory": "NO_DISPLAY",
 "category": "Comm",
 "probabilities": [0.733, 0.251, 0.016],
 "outcome": ["low", "medium", "high"],
 "parents": [],
 "desc": "Communication sent by $party_name to influence
investors"
 }, {
 "lookupcode": "RD26",
 "level": 1,
 "name": "Trade",
 "threshold": [0.33, 0.75],
 "source": "Trade",
 "id": "26",
 "subcategory": "NO_DISPLAY",
 "category": "Derived",
 "probabilities": [
 [1, 0, 0.002, 0, 0, 0.005, 0.002, 0.004, 0.072],

82 IBM Surveillance Insight for Financial Services Version 2.0.2 : IBM Surveillance Insight for Financial Services
Solution Guide

 [0, 1, 0.002, 1, 0.999, 0.005, 0.002, 0.004, 0.072],
 [0, 0, 0.996, 0, 0, 0.99, 0.996, 0.991, 0.855]
],
 "outcome": ["low", "medium", "high"],
 "parents": ["16", "21"],
 "desc": "Risk observed from Trade data"
 }, {
 "lookupcode": "RD16",
 "level": 2,
 "name": "Pump",
 "threshold": [0.33, 0.75],
 "source": "Trade",
 "id": "16",
 "subcategory": "NO_DISPLAY",
 "category": "Trade",
 "probabilities": [0.721, 0.265, 0.015],
 "outcome": ["low", "medium", "high"],
 "parents": [],
 "desc": "Pump in progress in the ticker"
 }, {
 "lookupcode": "RD21",
 "level": 2,
 "name": "Dump",
 "threshold": [0.33, 0.75],
 "source": "Trade",
 "id": "21",
 "subcategory": "NO_DISPLAY",
 "category": "Trade",
 "probabilities": [0.729, 0.257, 0.014],
 "outcome": ["low", "medium", "high"],
 "parents": [],
 "desc": "Dump in progress in the ticker"
 }],
 "edges": [{
 "source": "27",
 "target": "15"
 }, {
 "source": "25",
 "target": "27"
 }, {
 "source": "24",
 "target": "27"
 }, {
 "source": "23",
 "target": "27"
 }, {
 "source": "22",
 "target": "27"
 }, {
 "source": "26",
 "target": "15"
 }, {
 "source": "16",
 "target": "26"
 }, {
 "source": "21",
 "target": "26"
 }]
 },
 "toBeScoredData": {
 "ticker": "PDZ",
 "nodes": [{
 "id": "22",
 "value": 1
 }]

Inference engine 83

 }
}

The result is a string in JSON format that contains the outcome of the inference engine. The following is an
example of a response.

{
 "results": [{
 "score": 1,
 "id": "33"
 }, {
 "score": 0.9,
 "id": "34"
 }, {
 "score": 0.7135125,
 "id": "35"
 }, {
 "score": 0.15500289242473736,
 "id": "36"
 }, {
 "score": 0,
 "id": "37"
 }, {
 "score": 0.75,
 "id": "15"
 }, {
 "score": 1,
 "id": "26"
 }, {
 "score": 0.33,
 "id": "27"
 }, {
 "score": 0.9,
 "id": "30"
 }, {
 "score": 0,
 "id": "31"
 }, {
 "score": 0.887188235294118,
 "id": "32"
 }],
 "alert": {
 "isAlert": true,
 "score": 0.75
 },
 "status": {
 "code": 200,
 "message": "success"
 }
}

The isAlert field gives the outcome of whether an alert needs to be created.

The score field contains the alert score that is consolidated from the individual risk indicator scores.

The status field indicates the overall status of the inference.

The inference engine returns whether the inputs are risky enough to cause an alert. Whether a new alert
needs to be created or an existing alert needs to be updated depends on the use case implementation.
The inference engine does not consider new alert or updating an existing alert.

84 IBM Surveillance Insight for Financial Services Version 2.0.2 : IBM Surveillance Insight for Financial Services
Solution Guide

Chapter 9. Indexing and searching
IBM Surveillance Insight for Financial Services provides indexing capabilities for analytics results.

Surveillance Insight uses IBM Solr for indexing and searching features. The search capabilities allow
users to search for any kind of communication (email, chat, or voice message), by using keywords or other
attributes. Indexing is performed on the content of each communication regardless of the channels and
on the results of the analytics.

Indexing is performed on three objects:

• Alert
• E-Comm (includes email, chat, and voice)
• Employee

Employee data is indexed as a one-time initial load. Updates to employee data is not relayed into the
indexing system in this release.

E-Comm content and the analytic results are indexed. The email body, collated chat content, and all
utterances of voice speech are indexed.

When an alert is created, certain attributes of the alert are also indexed. Updates to an alert, such as
adding new evidence to an existing alert is updated in Solr.

The global search feature is sourced from the indexing system.

Solr schema for indexing content

Table 18: Solr schema for indexing content

Field Name Field Type Stored Indexed multiValued

commid String Y Y N

commstarttime Date Y Y N

commendtime Date Y Y N

commtype String Y Y N

commsubject text_general Y Y N

commtext text_general N N N

sourcereferenceid String Y Y N

comminitiatornam
e

text_general Y Y N

comminitiatorid String Y Y N

comminitiatorcont
act

text_general Y Y N

commparticipantsi
d

String Y Y Y

commparticipantsn
ame

text_general Y Y Y

commparticipantsc
ontact

text_general Y Y Y

commtags String Y Y Y

© Copyright IBM Corp. 2016, 2017 85

Table 18: Solr schema for indexing content (continued)

Field Name Field Type Stored Indexed multiValued

commdescription text_general Y Y N

commchannel text_general Y Y N

*_score Float Y Y N

*_keywords text_general Y Y Y

classification String Y Y Y

entity text_general Y Y Y

evidenceids text_general Y Y Y

doctype text_general Y Y N

alertid text_general Y Y Y

alerttype text_general Y Y N

alertstatus text_general Y Y N

assetclass text_general Y Y N

ticker text_general Y Y N

participants text_general Y Y Y

tradernames text_general Y Y Y

alertevidenceids text_general Y Y Y

id text_general Y Y N

activealerts int Y Y N

employeeid string Y Y N

description string Y Y N

name text_general Y Y N

partyid String Y Y N

pastviolations int Y Y N

city text_general Y Y N

state text_general Y Y N

role text_general Y Y N

riskrating float Y Y N

*_dt date Y Y N

86 IBM Surveillance Insight for Financial Services Version 2.0.2 : IBM Surveillance Insight for Financial Services
Solution Guide

Chapter 10. Conduct Surveillance
The Conduct Surveillance piece of IBM Surveillance Insight for Financial Services provides the
components to build a solution that analysis customer complaints and identifies trends in the complaints
with respect to the domain-specific theme of the complaint, the product, and sub-product to which the
complaint corresponds, the geography, and the age of the complaining customer.

The key components of the conduct surveillance solution are:

• The Analysis Pipeline
• Trend Analysis Component
• Complaints Dashboard and Supporting Data Services

Figure 42: Conduct Surveillance workflow

The raw data is analyzed through a pipeline of machine learning models that output the features of each
complaint, such as the theme, sub-theme, product, and sub-product, to which the complaint belongs.
These features, along with the customer age and geography, are then fed as inputs to the trend analysis
component that identifies trends across the various combinations of these features. The results of the
trend analysis are published to a web-based dashboard for the compliance officers to review.

Raw data schema and ingestion
Raw complaints data is typically in CSV format. The schema of this data is not restricted by IBM
Surveillance Insight for Financial Services. The analysis pipeline implementation must provide a schema
transformation stage to map the input fields to the complaints features schema that is expected by the
trend analysis component.

The sample analysis pipeline that is provided with IBM Surveillance Insight for Financial Services uses a
specific schema.

The raw data is expected to be in loaded into the HDFS for the analysis pipeline to consume as a Spark
data set. To leverage the pipeline stages and API that are provided by Surveillance Insight, the data must
be loaded into Surveillance Insight and read as a Spark data set. However, this is not a constraint if a non-
Spark based pipeline implementation is the preferred way to implement the pipeline. As long as the
complaints features are generated in HDFS in the required schema, the pipeline can be implemented
using other technologies.

Analysis pipeline
The analysis pipeline processes complaint text through a series of machine learning models that analyze
the textual content and identify whether it is a complaint, what keywords of interest are present in the
complaint, and what theme (or category) of interest the complaint belongs to.

Input to the pipeline is raw data and the output is a CSV file that contains the complaint features. The
schema or the complaint features are detailed in the complaint features section.

IBM Surveillance Insight for Financial Services also provides an API, that is a wrapper for the Spark ML
APIs, to create custom pipelines and a sample implementation of a pipeline that uses the publicly
available CFPB data.

© Copyright IBM Corp. 2016, 2017 87

Note: IBM Surveillance Insight for Financial Services does not provide machine learning models as part of
the product. These models must be created as part of the specific engagement.

Create an analysis pipeline

Complaints pipeline API

IBM Surveillance Insight for Financial Services provides a wrapper API to create Spark pipelines. Typical
usage of the API is as follows:

• Create a pipeline:

public ComplaintsPipeline(SparkSession spark, HashMap<String,String>
propertiesMap)

The propertiesMap is expected to hold the following properties that are read from the
sifs.spark.properties file:

HDFSComplaintsPath=complaints
WatsonNLCThemeClassifierREST=https://gateway.watsonplatform.net/natural-
language-classifier/api/v1/classifiers/<THEME_CLASSFIER_MODEL_ID>/classify
WatsonNLCComplaintsClassifierREST=https://gateway.watsonplatform.net/
natural-language-classifier/api/v1/classifiers/
<COMPLAINTS_CLASSIFIER_MODEL_ID>/classify
WatsonNLCCredentials=<nlc_username>:<nlc_password>

WatsonNLUREST=https://gateway.watsonplatform.net/natural-language-
understanding/api/v1/analyze?version=2017-02-27
WatsonNLUModelID=alchemy
WatsonNLUCredentials=<nlu_username>:<nlu_password>

SolrREST=https://<IP>:8984/solr/complaints/update?commit=true

ComplaintsRestServiceForTrendAnalysis
ComplaintTrendsREST=https://<IP>:9443/complaintsservices/surveillance/v1/
complaint/createTrend

• Add stages to the pipeline:

public boolean addStage(Transformer pipelineStage)

A pipeline stage is implemented as a Spark Transformer and passed to the API.
• Run the pipeline:

public Dataset<Row> run(Dataset<Row> complaintsDS)

Calling the run method starts the execution of the pipeline with the configured stages.

For more information about creating transformers by using the Spark API, see the Spark documentation.

Reusable pipeline stages

IBM Surveillance Insight for Financial Services provides the following Spark transformers that you can use
as stages in an analysis pipeline:

• ComplaintsNLUStage

– Provides an implementation that calls the Watson Natural Language Understanding (NLU) REST
service to identify entities of interest in the complaint text for each complaint. This implementation
expects the NLU model to return the complaint and process the entities by using the naming

88 IBM Surveillance Insight for Financial Services Version 2.0.2 : IBM Surveillance Insight for Financial Services
Solution Guide

convention "Complaint_xxxx" and "Process_yyy", where xxx and yyy are the category and process
mapping for the complaint. The implementation also interprets relationships between a category and
a process. This is expected to appear in the "relation" part of the Watson NLU service response.

– Input: Complaint features dataset with the raw complaint text and with the IS_COMPLAINT flag set.
– Output: Complaint features dataset with the NLU_Response field set to the response from the NLU

service.
• ComplaintClassifierStage

– Provides an implementation that calls the Watson Natural Language Classifier (NLC) REST service to
identify whether a piece of text is a complaint. This implementation breaks the complaint text into
chunks of 1024 characters and passes them to the NLC service. The first chunk that qualifies to be a
complaint (that is, crosses the configurable ComplaintThreshold parameter), stops the processing of
further chunks. This implementation expects the NLC to return a "Complaint" or "Non-Complaint"
class.

– Input: Complaint features dataset with the raw complaint text and the IS_COMPLAINT flag set (see
schema section for details). The model that is required to perform the classification is expected to be
created and configured as input to this stage. The model is not provided as part of the product.

– Output: Complaint features dataset with the THEME field set to the response from the NLC service.

Reusable utilities

The following persistence components are available for reuse for implementing a pipeline:

• ComplaintsPersistence: This component provides methods for persisting the complaint features to
HDFS and the Complaints table in DB2.

• ComplaintsSolrDataLoader: This component provides a method to persist the complaint features to Solr.
This is to enable the search of complaint features through the complaints dashboard.

Sample pipeline implementation

IBM Surveillance Insights product provides a sample implementation of an analysis pipeline that uses the
following stages, in order:

1. Schema Adaptor
2. Complaint Classifier
3. Theme Classifier

The sample implementation provides an example of a typical pipeline design for complaints analysis. It
contains a schema adaptor that maps the contents of the raw data to the complaint features schema. This
step creates a dataset that passes through all the stages in the pipeline. Each stage then completes the
necessary fields based on its purpose.

In the case of the sample implementation, the NLU stage populates the results from the Watson NLU
service into the NLU_Response field in the incoming dataset and also the Theme and Process fields. The
Complaint Classifier runs an NLC model that classifies the text as complaint or non-complaint and sets
the IS_COMPLAINT flag in the output dataset.

The persistence step saves the outcome of the pipeline, which is the complaint features dataset, to the
HDFS. It also persists part of the response to the complaint table in DB2. The complaint text and some
other related information are persisted to Solr. The schemas are detailed in the schema section. The
persistence step is not implemented as a pipeline stage.

The header for the raw data used for the sample pipeline is as follows:

COMPLAINT_DATE,PRODUCT,SUB_PRODUCT,COMPLAINT_TEXT,GEO,REFERENCE_ID,CUSTOMER_I
D

The data itself is taken from the publicly available CFPB database. The sample data contains 3 months of
complaints for the Mortgage product.

Conduct Surveillance 89

An NLC model must be created for the Watson Bluemix NLC Service by using the sample CFPB data. The
model ID must be configured in the sifs.spark.properties file. The same is true with the NLU
service. The output results are saved to HDFS in the complaints_features.csv file in the /user/
sifsuser/complaints/output directory.

Data schemas

The following diagram shows the logical data model of the complaints tables in the SIFS database:

• COMPLAINT contains the details of each complaint that is processed by the pipeline. It does not contain
the actual complaint text. The text is saved in Solr to enable search through the UI. This table contains
the results from the models that processed the complaint (THEME.THEME_SCORE, TAGS,ENTITIES) and
some basic information obtained from the raw data.

• COMPLAINT_TRENDS contains the trends that are identified in the complaints and the trend attributes
that were used to compute the trend.

• TREND_TYPE_MASTER contains the master data for the trend direction (upwards, downwards, neutral).
• THEME_RISK_MAP contains the risk level for each category.

The rest of the tables in the complaints view of the data model are from the SIFS data model.

Figure 43: Complaints View – SIFS Data model

Complaint features

The complaint features file is persisted to the HDFS as a CSV file. It contains the following data for each
record that is processed through the pipeline. Every record may or may not be a complaint.

The complaints_features.csv file contains:

• complaint_id — system generated id
• reference_id — id of the complaint in the source file
• complaint_date — date mentioned in the complaint or date email was received
• theme_confidence_score — as returned by NLC model

90 IBM Surveillance Insight for Financial Services Version 2.0.2 : IBM Surveillance Insight for Financial Services
Solution Guide

• theme — as returned by NLC model
• sub-theme — as returned by the NLC model
• product — as returned by the NLU model
• sub-product — as returned by the NLU model
• product_ref — product reference in raw data
• sub-product_ref — sub-product reference in raw data
• geo — geo reference in raw data
• channel — channel reference in raw data
• customer_id — customer id reference in raw data
• customer_age — customer age reference in raw data
• customer_gender — customer gender reference in raw data
• customer_race — customer race reference in raw data
• is_complaint — true/false as returned by the NLC model
• is_complaint_score — as returned by the NLC model
• NLU_Response — as-is response of the NLU model
• Subject — subject of the complaint from raw data
• from_mailid — valid only for email complaints
• to_mailid — valid only for email complaints
• Tone_Analyzer_Response — not in use

Trend analysis
A trend is a change in the normal number of expected complaints. A trend is a consistent upward or
downward movement, out of the ordinary range. For an upward trend, each count must be equal to or
greater than the previous count. For a downward trend, each count must be less than or equal to the
previous count.

Figure 44: Detecting trends

The diagram shows the number of complaints for one issue for the 30 days before the end date
(2017-05-01). The x-axis is the day of the month, and the y axis is the number of complaints per day for
the theme. For the first 19 days of the month, there are no complaints for this theme. Then starting on the
19th day, there are increasing amounts of complaints, which indicates a trend.

The last 7 days are highlighted in pale green. This is the short window that relates to the recent past: most
of the time, the trends that are happening now are the most important. The blue line is the raw number of
complaints per day. It is highly variable as the number of complaints vary between weekdays and
weekends. A green line is also plotted by taking the average over the previous 7 days for each day. This
removes the noise that is caused by weekdays/weekends. The pale red horizontal dotted line is the
average number of complaints in the 30-day period. The pale cyan horizontal dotted line is the average

Conduct Surveillance 91

number of complaints in the last 7-day period. This clearly shows that the average number of complaints
in the last 7 days is approximately three times the number of complaints over the whole month.

Examples of trends

It can be useful to look at real examples of trends to understand some of the issues about discovering and
displaying trends.

The following trend is noisy and doesn’t increase in a smooth fashion:

The following trend is short lived and represents a single spike in complaints:

The following is a trend that overall is increasing but might be showing different scores due to the day of
the week: fewer people make complaints at the weekends (see the two low scores in the green part on
days 30 and 31):

The following is a more complicated trend. The counts are increasing (trending) on the right-hand side but
they were also high at the start of the month and low in the middle. The possible causes are:

• This is just a noisy complaint theme and has naturally variability.
• This trend has a monthly periodicity. It might be that people complain at the same time every month, for

example, over a few days when monthly bills are sent.

How trend detection works

The first step of the trend detection algorithm groups all the complaints according to their characteristics,
counts the daily totals, and then identifies which of these are trending.

All complaints are classified by the Natural Language Classifier and Natural Language Understanding
models, and the results are combined with customer data. This gives a number of variables for all

92 IBM Surveillance Insight for Financial Services Version 2.0.2 : IBM Surveillance Insight for Financial Services
Solution Guide

complaints: category, process, product, theme, sub-product, age, zip code, state, gender etc. The exact
list of fields available depends on the customer data set. The user can determine which of these available
fields are of interest for trend detection by updating the config file.

The trend detection algorithm derives all the combinations of these fields:

1. complaint_category
2. complaint_category + process
3. complaint_category + process + zip code
4. …

This forms a hierarchy of complaint trends: the top level are very generic but more specific details appear
as columns are added.

The trend detection algorithm then counts the complaints in each combination for all values in each field:

1. complaint_category = ‘burdensome request’, …
2. complaint_category = ‘burdensome request’ + process = ‘Mortgage Application”,
3. complaint_category = ‘burdensome request’ + process = ‘Mortgage Application” + zip code = 9410
4. …

The complaints are counted for each of these combinations, and evaluated to see if a trend can be found.
Complaints are counted over periods of 30, 60, and 90 days. Trend details and trend timelines are viewed
in the Surveillance Insights Complaints Analytics Dashboard.

Trend Detection Rule

Given a timeline of complaint counts, it is flagged as trending if:

• There is a general increase or decrease in the last 7 days (short window). See section below for
definition of a monotonic increase.

• There is at least one day where the count is unexpectedly large or small given the preceding counts. In
technical terms, at least one day has exceeded the expected Poisson distribution score. See section
below on Poisson distribution

• There is a clearly defined start and end to the trend within the short window. For the start-date this
means there must be at least one day greater than the average count over the long window. For the end-
date this means there must be one day with a count greater than the start date (for an increasing trend.)

• The end-count must be greater than the start-count for an increasing trend. The end-count must be less
than the start-count for a decreasing trend.

Trend Risk Score

For each timeline that is detected as a trend: the risk score is calculated which expresses how significant
each trend is as a percentage score.

Trends may vary widely in terms of size, speed of growth and other factors. It is difficult to find a “one-size
fits all” method for scoring when high-level complaints may have tens or hundreds of thousands of
complaints and increase slowly, while a low-level trend may only contain tens of complaints but be
increasing rapidly. Early detection of growing trends is a key use case so the trend detection algorithm
should highlight both.

The scoring method is designed to allow size and speed of increase and decrease and consistency of
increase or decrease to all be considered.

The risk score is calculated from 3 components:

1. The number of complaints since the trend was detected: trends with bigger increases or falls in
complaints score higher.

2. The gradient of the increase or decrease: trends which increase or fall more steeply score higher.

Conduct Surveillance 93

3. How "monotonic" the fall or increase is. Trends are often noisy i.e. even if there is an overall increase
some points are less than the preceding count. A monotonic increase is one where all counts are either
greater than or equal to the preceding days complaint count. Trends where the count only goes in one
direction score higher because they are more consistent.

Figure 45: Monotonic trend

Figure 46: Non-monotonic trend

A score is created from these three factors between 0 and 85% (the maximum). Some tuning may be
required for each data set

The risk score is calculated from:

1. Total number of complaints in trend
2. gradient of trend
3. monotone score – does the trend only increase or decrease

Each of these has a weight factor configurable by the user giving the relative importance of each as a
fraction adding to 1. For example:

1. complaints weight = 0.5
2. gradient weight = 0.3
3. monotone weight = 0.2

The score is calculated as:

Where:

• logs are calculated using base 10
• All 3 main terms are raised to the power of the corresponding weight
• The results are multiplied together

The following is an example:

94 IBM Surveillance Insight for Financial Services Version 2.0.2 : IBM Surveillance Insight for Financial Services
Solution Guide

Here a trend has been identified in the last 7 days:

Number of complaints in last 7 days = 1380 : (100 + 150+ 160+ 190+ 210+ 220+
350)

• Gradient = (final count – initial count)/ 7 days = 350 -100/7 = 35.7
• Monotone score = 100% (all counts from 24th to 30th are greater than preceding day count)

The user has determined these weights:

1. complaints weight = 0.5
2. gradient weight = 0.4
3. monotone weight = 0.1

This means that the total number of complaints is the most important factor, increasing gradient is almost
as important, but they don’t care so much if a trend is noisy.

The user has also determined these factors:

• For the number of complaints: all trends will be ranked on a scale between 0 and 10,000:

Max complaints = 10,000
• For the gradient: all trends will be ranked on a scale between 0 and 1000. A gradient of 1000 signifies

that the fastest growing trend the user has seen or expects to see will grow at a rate of 1000 additional
counts per day:

Max gradient = 1000

The score is then scaled to have a maximum of 85%.

Final score = 0.7 * 85% = 60%

Earliest Trend Detection Date

If a trend is detected, the earliest trend detection date is designated as the first day on which the
complaints counts exceeds the long-term average. The earliest trend detected date is shown with a red
dot in the UI, see below. If the trend continues increasing over a prolonged period the earliest trend
detection date is preserved as the first date on which the count exceeded the long-term average.

Conduct Surveillance 95

Trending 7 days and 30 days Calculation

This describes the method for calculating the trending 7 days and trending 30 days scores on the
complaints UI. These are displayed in the UI:

This calculates how much the trend has increased over a period as a percentage of the original amount:
(increase or decrease / original amount) as a percent.

Trend over the last 7 days:

• amount 'today' = 35
• original amount (7 days ago) = 10
• increase over the last 7 days = 35 - 10 = 25

Trending last 7 days = 25/10 = a 250% increase

Trend over the last 30 days:

• amount 'today' = 35
• original amount (30 days ago) = 5
• increase over the last 30 days = 35 - 5 = 30

Trending last 30 days = 30/5 = a 600% increase

Negative scores

It is possible for the trend detection to find an increasing trend and still have negative or decreasing trend
scores. There are two examples below.

96 IBM Surveillance Insight for Financial Services Version 2.0.2 : IBM Surveillance Insight for Financial Services
Solution Guide

Trend over the last 7 days:

• amount 'today' = 35
• original amount (7 days ago) = 10
• increase over the last 7 days = 35 - 10 = 25

Trending last 7 days = 25/10 = a 250% increase

Trend over the last 30 days:

• amount 'today' = 35
• original amount (30 days ago) = 40
• increase over the last 30 days = 35 - 40 = -5

Trending last 30 days = 5/40 = a -12.50% increase (or a 12.50% decrease)

Trend over the last 7 days:

• amount 'today' = 15
• original amount (7 days ago) = 25
• increase over the last 7 days = 15 - 25 = -10

Trending last 7 days = 10/25 = -40%

Trend over the last 30 days:

• amount 'today' = 15
• original amount (30 days ago) = 5
• increase over the last 30 days = 15 - 5 = 10

Trending last 30 days = 10/5 = 200%

Trend statistics

Trends may vary widely in terms of size, speed of growth and other factors. It is recognized that it is
difficult to find a “one-size fits all” method. For example, some of the high-level complaints have tens or
hundreds of thousands of complaints and may increase slowly, while a low-level trend may only contain

Conduct Surveillance 97

tens of complaints. Early detection of growing trends is a key use case so the trend detection algorithm
should highlight both. Given this, a number of statistics for each trend are calculated so that there is
flexibility in updated the trend detection method in the future if required:

Table 19: Trend statistics

Statistic Description

count total number of complaints in the long window

count in trend window total number of complaints in the short window

mean count average number of complaints per day for the long
window (this includes the days in the short
window)

mean count in trend window average number of complaints per day for the short
window

mean ratio (mean count in the short window) / (mean count in
the long window)

trendinglast7days increase in % over the last 7 days using the raw
counts, calculated as:

(count on the last day - count on 7th day before
this) / count on 7th day before this

trendinglast30days increase in % over the last 30 days using the raw
counts, calculated as:

(count on the last day - count on 30th day before
this) / count on 30th day before this

Trend type id Type of trend: 'increasing'=1, ’decreasing'=2, 'no
trend'=3

Mk trend True if there is a trend (i.e. if trend type id = 1 or 2)

Mk score p-value The confidence score (p-value) that the Mann-
Kendall algorithm has discovered a trend:

Score < .05 = low, Score < 0.1 = high, Score <
0.001 = very high confidence

poisson_scores_max The highest Poisson score in the trend window

poisson_above_thresh_count_inc how many days in the short window had a Poisson
score greater than the Poisson threshold for an
increasing trend

poisson_above_thresh_count_dec how many days in the short window had a Poisson
score greater than the Poisson threshold for a
decreasing trend

Mann-Kendall score

The purpose of the Mann-Kendall score is to statistically assess if there is a monotonic upward or
downward trend of the variable of interest over time. A monotonic upward (or downward) trend means
that the variable consistently increases (or decreases) through time, but the trend might or might not be
linear.

98 IBM Surveillance Insight for Financial Services Version 2.0.2 : IBM Surveillance Insight for Financial Services
Solution Guide

Point-by-point Poisson Model

The Poisson distribution model is a statistical model that is used to evaluate how unusual a point in a
time-series is when compared to previous points. It is used in the trend analysis model to help identify
sudden increases (or decreases) in the number of complaints seen that may help indicate the presence of
a trend.

The Poisson distribution describes the probability of observing a count of some quantity, when many
sources have individually low probabilities of contributing to the count. The point-by-point Poisson model
uses the previous point in a time series to define the expectation for the current point, and gives us the
unlikeliness of a count of complaints given the previous count.

Complaints dashboard
The Complaints dashboard is a web-based application that shows the complaints trend analysis results.

You access the Complaints dashboard by entering the following URL in your web browser:

https://hostname:port/ui.complaintsdashboard/

You must enter your log in credentials.

The Complaints dashboard shows the key trends in the analyzed complaints in a table. It also shows a
bubble chart with further details on the trends. Each bubble corresponds to a single trend in the trend
table. The size of the bubble corresponds to the volume of complaints that contributed to the trend. The
color of the bubble corresponds to the level of risk that is associated with the complaint.

Figure 47: Complaints dashboard

Click a row in the trend table or a bubble in the bubble chart to display the Theme Details page.

Theme Details

The Theme Details page shows the complaints that contributed to the trend. It also shows a trend
analysis chart with the complaint count and the date on the Y and X axis. Click one of the complaints in
the table to show the evidence details page.

Conduct Surveillance 99

Figure 48: Theme Details page

Evidence Details

The Evidence Details page shows the actual complaint text with the customer information. The complaint
text is annotated with entities of interest that were identified by the NLU model. Users can also add or
remove tags that correspond to the emotions that are expressed in the complaint text.

Figure 49: Evidence Details page

The complaints home page also contains the Explore option that you can use to view the complaint
counts across the categories, products, processes, geographical areas, and age groups. It also has the
keyword word counts for different combinations of the explore parameters. The following diagram shows
the explore view.

100 IBM Surveillance Insight for Financial Services Version 2.0.2 : IBM Surveillance Insight for Financial
Services Solution Guide

Figure 50: Explore view

The side pane displays the various filter parameters that you can use to filter the insights. The complaints
part of this view shows the list of actual complaints.

Figure 51: Explore view

Click a complaint from this list to display the complaint details similar to the one show in the Evidence
Details page.

Conduct Surveillance 101

Complaints data model
The following diagram shows the logical data model of the complaints tables in the SIFS database.

Figure 52: Complaints data model

The COMPLAINT table contains the details of each complaint that is processed by the pipeline. The table
does not contain the actual complaint text. The text is saved in Solr to enable search through the
dashboard. The table contains the results from the models that processed the complaint
(THEME.THEME_SCORE, TAGS, ENTITIES) and some basic information that is obtained from the raw data.

The COMPLAINT_TRENDS table contains the trends that are identified in the complaints and the trend
attributes that were used to compute the trend.

The TREND_TYPE_MASTER table contains the master data for the trend direction (upwards, downwards,
neutral).

The rest of the tables in the complaints view of the data model are from the SIFS data model.

Complaint features
The complaint features file is persisted to the Hadoop file system (HDFS).

The complaint feature file is in CSV format and it contains the following data for each record that was
processed through the pipeline. Note that every record might or might not be a complaint.

• complaint_id: system generated ID
• reference_id: ID of the complaint in the source file
• complaint_date: date that is mentioned in the complaint or the date that the email was received
• theme_confidence_score: as returned by NLC model
• theme: as returned by NLC model
• sub-theme: as returned by the NLC model
• product: as returned by the NLU model
• sub-product: as returned by the NLU model
• product_ref: product reference in raw data

102 IBM Surveillance Insight for Financial Services Version 2.0.2 : IBM Surveillance Insight for Financial
Services Solution Guide

• sub-product_ref: sub-product reference in raw data
• geo: geo reference in raw data
• channel: channel reference in raw data
• customer_id: customer ID reference in raw data
• customer_age: customer age reference in raw data
• customer_gender: customer gender reference in raw data
• customer_race: customer race reference in raw data
• is_complaint: true or false, as returned by the NLC model
• is_complaint_score: as returned by the NLC model
• NLU_Response: as-is response of the NLU model
• Subject: subject of the complaint from raw data
• from_mailid: valid only for email complaints
• to_mailid: valid only for email complaints
• Tone_Analyzer_Response: as-is response of the tone analyzer service

Solr data model for complaints
The complaints data in Solr is loaded into the complaints core by using a dynamic schema.

The schema contains the following fields for each complaint:

• customer_id_s
• subject_s
• theme_s
• complaint_text_s
• channel_s
• reference_id_s
• customer_age_i
• geo_ref_s
• complaint_date_dt
• id_s
• product_ref_s

Conduct Surveillance 103

104 IBM Surveillance Insight for Financial Services Version 2.0.2 : IBM Surveillance Insight for Financial
Services Solution Guide

Chapter 11. Health Check User Interface
Clicking the health check tab in the SIFS dashboard displays the Health Check page.

Health Check tabs
In this release there are two use cases.

Ecomm

In this use case there are three dashboards:

• Ingestion
• Processing
• Inference

Voice

In this use case there are six dashboards:

• Ingestion services
• Data services
• Streams PCAP
• Streams 3rd Party
• Services
• Streams WAV adaptor

By default, the Ecomm – Ingestion dashboard has a default date range of one year.

Figure 53: Default Health Check UI

Date ranges
There are two types of date ranges, Custom Range and Predefined Ranges.

© Copyright IBM Corp. 2016, 2017 105

Custom Range

The Custom Range option contains a Start date and an End date. By default, the Start date is the current
day and the End date is one year after the Start date. You can search for any Start date or End date.

Predefined Ranges

The Predefined Ranges option is used to select dates quickly. From the drop-down lists for Start date
and End date, you can select from a number of options: Today, Yesterday, This Week, This Month, and
This Year.

After you select a date range from these options, click to display data for the date range in the
dashboards.

Health Check dashboards
There are two types of dashboards: Ecomm and Voice. Both display data based the selected date ranges.

Ecomm dashboards
There are three Ecomm dashboards: Ingestion, Processing, and Inference.

Ingestion

The Ingestion dashboard has four visualizations:

• Ecomm Ingestion API Stats – Up/Down Status. This chart displays the Up/Down status ratio for the
Ecomm ingestion service during a specified time interval.

• Ingestion API Stats – Success/Error Messages. This chart displays the Success/Error Messages ratio
for a specified time interval.

• Ingestion API Stats – Response Time (ms). This chart shows the average response time of ingested
records per millisecond for a specified time interval.

• Ingestion API Stats – Thoughput records /sec. This chart shows the average number of records that
are ingested per second.

Figure 54: Ecomm Ingestion dashboard

106 IBM Surveillance Insight for Financial Services Version 2.0.2 : IBM Surveillance Insight for Financial
Services Solution Guide

Processing

The Processing dashboard has eight visualizations.

• Ecomm Spark Job – AnalyzeComm. This chart shows the Up/Down status ratio during a specified
time interval. It runs for 2 to 5 minutes a day and has a higher percentage of Down status.

• Ecomm Spark Job – Process Communication. This chart shows the Up/Down status ratio during a
specified time interval. It runs all the time.

• Ecomm Spark Job – Profile Aggregator. This chart shows the Up/Down status ratio during a specified
time interval. It runs for 2 to 5 minutes a day and has a higher percentage of Down status.

• Ecomm Spark Job – Persist Email. This chart shows the Up/Down status ratio during a specified time
interval. It runs all the time.

• Ecomm Processing – No of Communication Processed. This metric is the total number of emails that
are processed by a Persist Email spark job for a specified time interval.

• Ecomm Dashboard – Ingestion vs Processing. This chart shows the real-time count of Ingestion
Throughput & Processing Throughput, Backlog (Ingestion – Processing) counts for a specified time
interval. In the chart:

– Green represents Ecomm Ingestion.
– Blue represents Ecomm Processing.
– Orange represents backlog.

• Ecomm Processing – GCID Errors. This metric is the number of GCID errors for a specified time
interval.

• Ecomm Processing – parse email data errors. This metric is the number of parse email errors for a
specified time interval.

Figure 55: Ecomm Processing dashboard

Inference

The Inference dashboard has three visualizations.

• Ecomm Processing – Inference Alerts bar chart. This chart shows the number of inference alerts for a
specified time interval.

• Ecomm Processing – No of Communications Processed in Inference. This metric is the sum of all
communications that were processed in inference for a specified time interval.

• Ecomm Processing – Inference Last Run Time. This metric is the last run time of an inference spark
job. The inference spark job generally runs once nightly in a 24-hour period.

Health Check User Interface 107

Figure 56: Ecomm Inference dashboard

Voice dashboards
There are five Voice dashboards: Ingestion Services, Data Services, Streams PCAP, Stream 3rd Party
Services, and Stream WAV Adaptor.

Ingestion Services

The Ingestion Services dashboard has four visualizations:

• Voice Ingestion API Stats – Uptime Status. This chart displays the Up/Down status ratio for the Voice
ingestion service during a specified time interval.

• Voice Ingestion API Stats – Success/Error Messages. This chart displays the Success/Error
Messages ratio for a specified time interval.

• Voice Ingestion API Stats – Response Time(in ms). This chart shows the average response time of
ingested records per millisecond for a specified time interval.

• Voice Ingestion API Stats – Thoughput Records /sec. This chart shows the average number of records
that are ingested per second.

Figure 57: Voice Ingestion Services dashboard

108 IBM Surveillance Insight for Financial Services Version 2.0.2 : IBM Surveillance Insight for Financial
Services Solution Guide

Data Services

The Data Services dashboard has five visualizations.

• Voice Data Services API Stats – Up/Down Status. This chart shows the Up/Down status ratio during a
specified time interval.

• Voice Data Services API Stats – Success/Error Messages. This chart shows the Up/Down status ratio
during a specified time interval.

• Voice Data Services API Stats – Response Time (in ms) for Import service. This chart shows the
average response time of ingested records of import service per millisecond for a specified time
interval.

• Voice Data Services API Stats – Response Time (in ms) for Export service. This chart shows the
average response time of ingested records of export service per millisecond for a specified time interval.

• Ingestion API Stats – Thoughput records /sec. This chart shows the average number of records that
are ingested per second.

Figure 58: Voice Data Services dashboard

Streams PCAP

The Streams PCAP dashboard has nine visualizations:

• ConfigureCallProgressEvent Streamjob Up/Down Status. This chart displays the Up/Down status
ratio for the ConfigureCallProgressEvent Stream job service during a specified time interval.

• IPC Streamjob Up/Down status. This chart displays the Up/Down status ratio for the IPC Stream job
service during a specified time interval.

• Watson Streamjob Up/Down Status. This chart displays the Up/Down status ratio for the Watson
Stream job service during a specified time interval.

• Main Streamjob Up/Down Status. This chart displays the Up/Down status ratio for the Main Stream
job service during a specified time interval.

• Voice Steam PCAP Stats – PCAP voice calls (avg processing time). This chart displays the average
processing time for voice calls per second for a specified time interval.

• Voice Stream PCAP Stats – no of voice calls ingested (thoughput). This chart displays the average
number of voice calls ingested during a specified time interval.

• Voice Stream PCAP Stats – Total Call duration. This metric is the total duration of all voice calls during
a specified time interval.

Health Check User Interface 109

• Voice Stream PCAP Stats – Stream Errors. This metric is the total number of PCAP stream errors
during a specified time interval.

• Voice Stream PCAP Stats – PCAP voice export error. This metric is the total number of PCAP voice
export errors during a specified time interval.

Figure 59: Voice Stream PCAP dashboard

Stream 3rd Party Services

The Stream 3rd Party Services dashboard has eight visualizations.

• ConfigureCallProgressEvent StreamJob Up/Down Status. This chart shows the Up/Down status ratio
during a specified time interval.

• Voice Stream ThirdParty API Stats – communicationHistory Response_time. This chart shows the
average response time of CommunicationHistory records of 3rd party service during a specified time
interval.

• Voice Stream ThirdParty API Stats – createSession Response_time. This chart shows the average
response time of CreateSession records of 3rd party service during a specified time interval.

• Voice Stream ThirdParty API Stats –logonSession Response_time. This chart shows the average
response time of records of 3rd party service during a specified time interval.

• Voice Stream ThirdParty API Stats –Response_time. This chart shows the average response time of
all records of 3rd party service during a specified time interval.

• Voice Stream ThirdParty API Stats – CreateSession error/logon Session error/
CommunicationHistory error. This chart shows all three types of errors during a specified time interval.

• Voice Stream ThirdParty API Stats – Success/Error. This chart shows the success to error ratio for a
specified time interval.

• Voice Stream ThirdParty API Stats – Total Metadata Errors. This metric is the total errors found with
type Metadata in a specified date range.

110 IBM Surveillance Insight for Financial Services Version 2.0.2 : IBM Surveillance Insight for Financial
Services Solution Guide

Figure 60: Voice Stream 3rd Party Services dashboard

Stream WAV Adaptor

The Stream WAV Adaptor dashboard has six visualizations.

• WAVAdaptor StreamJob Up/Down Status. This chart shows the Up/Down status ratio during a
specified time interval.

• Voice Stream WAVAdaptor Stats – voice calls (avg processing time). This chart shows the average
processing time of voice calls per second during a specified time interval.

• Voice Stream WAVAdaptor Stats - no of voice calls ingested(Thoughput). This chart shows the
number of voice calls in 10mins/hr/day interval based on the time frame length.

• Voice Stream WAVAdaptor Stats – Total Call Duration. This metric is the total call duration in seconds
for a specified date range.

• Voice Stream WAVAdaptor Stats – voice export error. This metric is the total numbers total number of
voice export errors for a specified date range.

• Voice Stream WAVAdaptor Stats – stream error. This metric is the total number of stream errors for a
specified date range.

Figure 61: Voice Stream WAV Adaptor dashboard

Health Check User Interface 111

112 IBM Surveillance Insight for Financial Services Version 2.0.2 : IBM Surveillance Insight for Financial
Services Solution Guide

Chapter 12. Troubleshooting
This section provides troubleshooting information.

CDISI5060E No default Java found
You receive the following message: CDISI5060E No default Java found.

To resolve this error, install Java version 1.6 or later and set it as the default version. Then, try the
command again.

Update the PATH variable in your .bashrc file to point to the JAVA location.

export PATH=<location of jre/bin directory>:$PATH

CDISI3059W You may be running a firewall which may prevent
communication between the cluster hosts

You receive the following error message: Warning: CDISI3059W You may be running a
firewall which may prevent communication between the cluster hosts

To resolve this, run the following command to stop the firewall service, and try the command again:

systemctl stop firewalld

For more information, see Firewall configuration guidelines for IBM Streams.

CDISI5070E The perl-XML-Simple software dependency is not installed
You receive the following error message: Error: CDISI5070E The perl-XML-Simple software
dependency is not installed

To resolve this error, install the following RPMs as the root user:

• perl-XML-NamespaceSupport-1.11-10.el7.noarch.rpm
• perl-XML-SAX-0.99-9.el7.noarch.rpm
• perl-XML-SAX-Base-1.08-7.el7.noarch.rpm
• perl-XML-Simple-2.20-5.el7.noarch.rpm

Use the following command to install each RPM:

rpm -ivh rpm_name

© Copyright IBM Corp. 2016, 2017 113

https://www.ibm.com/support/knowledgecenter/en/SSCRJU_4.2.0/com.ibm.streams.install.doc/doc/ibminfospherestreams-planning-firewall.html

114 IBM Surveillance Insight for Financial Services Version 2.0.2 : IBM Surveillance Insight for Financial
Services Solution Guide

Appendix A. Accessibility features
Accessibility features help users who have a physical disability, such as restricted mobility or limited
vision, to use information technology products.

For information about the commitment that IBM has to accessibility, see the IBM Accessibility Center
(www.ibm.com/able).

HTML documentation has accessibility features. PDF documents are supplemental and, as such, include
no added accessibility features.

© Copyright IBM Corp. 2016, 2017 115

http://www.ibm.com/able

116 IBM Surveillance Insight for Financial Services Version 2.0.2 : IBM Surveillance Insight for Financial
Services Solution Guide

Notices

This information was developed for products and services offered worldwide.

This material may be available from IBM in other languages. However, you may be required to own a copy
of the product or product version in that language in order to access it.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that only
that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.
This document may describe products, services, or features that are not included in the Program or
license entitlement that you have purchased.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not grant you any license to these patents. You can send license
inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in
any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of
the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

© Copyright IBM Corp. 2016, 2017 117

IBM Software Group
Attention: Licensing
3755 Riverside Dr.
Ottawa, ON
K1V 1B7
Canada

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the
results obtained in other operating environments may vary significantly. Some measurements may have
been made on development-level systems and there is no guarantee that these measurements will be the
same on generally available systems. Furthermore, some measurements may have been estimated
through extrapolation. Actual results may vary. Users of this document should verify the applicable data
for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

All statements regarding IBM's future direction or intent are subject to change or withdrawal without
notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

This Software Offering does not use cookies or other technologies to collect personally identifiable
information.

IBM Surveillance Insight for Financial Services includes Brat (v 1.3) from the following source and
licensed under the following agreement:

• http://weaver.nlplab.org/~brat/releases/brat-v1.3_Crunchy_Frog.tar.gz
• https://creativecommons.org/licenses/by-sa/3.0/legalcode

IBM Surveillance Insight for Financial Services includes spaCy Models (v 1.2.0) from the following source
and licensed under the following agreement:

• https://github.com/explosion/spacy-models (en_core_web_sm 1.2.0)
• https://creativecommons.org/licenses/by-sa/3.0/legalcode

Trademarks

IBM, the IBM logo and ibm.com are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at "
Copyright and trademark information " at www.ibm.com/legal/copytrade.shtml.

118 IBM Surveillance Insight for Financial Services Version 2.0.2 : IBM Surveillance Insight for Financial
Services Solution Guide

http://weaver.nlplab.org/~brat/releases/brat-v1.3_Crunchy_Frog.tar.gz
https://creativecommons.org/licenses/by-sa/3.0/legalcode
https://github.com/explosion/spacy-models
https://creativecommons.org/licenses/by-sa/3.0/legalcode
http://www.ibm.com/legal/copytrade.shtml

Index

A
accessibility 115
architecture 2

B
bulk execution detection 15
bulk order detection 15

C
chat data 37
classifier library 74
cognitive analysis and reasoning component 2
compliance workbench 2
concept mapper 69
concept mapper library 71

D
data ingestion

e-comm data 38
data store 2
document classifier 69

E
e-comm data ingestion 38
e-comm surveillance 37
email data 37
emotion detection 69
emotion detection library 69
end of day schema 26
event data schema 28
event schema 27
execution schema 20

G
guidelines for new models 34

H
high order cancellation 15

I
indexing 85
inference engine

risk model 79
running the inference engine 80

installation 3
introduction v

M
market reference schema 27
models

guidelines 34

N
natural language libraries

classifier 74
concept mapper 71
emotion detection 69

O
off-market

use case 31
order schema 22
overview 1

P
prerequsites 3
price trend 15
pump and dump

use case 28

Q
quote schema 24

R
real-time analytics 2
risk event schema 27
risk model

inference engine 79
running the inference engine 80

S
schemas

end of day 26
event 27
event data 28
execution 20
market reference 27
order 22
quote 24
risk event 27
ticker price 20
trade 25
trade evidence 27
transaction 27
voice surveillance metadata 54

searching 85

 119

solution architecture 2
spoofing

use case 29

T
ticker price schema 20
trade evidence schema 27
trade schema 25
trade surveillance component 15
trade surveillance toolkit 15
transaction schema 27

U
use case

off-market 31
pump and dump 28
spoofing 29

V
voice surveillance 49
voice surveillance schema 54

120

IBM®

	Contents
	Introduction
	Chapter 1. IBM Surveillance Insight for Financial Services
	The solution architecture
	Deploy the IBM Surveillance Insight for Financial Services software

	Chapter 2. Surveillance Insight Workbench
	Dashboard page
	Alert Details page
	Employee Details page
	Notes page
	Search pages
	Voice evidence page

	Chapter 3. Trade surveillance
	Trade Surveillance Toolkit
	Ticker price schema
	Execution schema
	Order schema
	Quote schema
	Trade schema
	End of day (EOD) schema
	Market reference schema
	Transaction schema
	Risk event schema
	Trade evidence schema
	Event schema
	Event data schema

	Pump-and-dump use case
	Spoofing detection use case
	Off-market use case
	Front running use case
	Extending Trade Surveillance

	Chapter 4. E-Comm surveillance
	E-Comm data ingestion
	E-Comm feature extraction
	Communication schema
	E-Comm risk scoring
	E-Comm Spark job configration
	End-to-end flow for e-comm processing

	Chapter 5. Voice surveillance
	Voice Ingestion service
	Voice data services
	Voice Surveillance Toolkit metadata schema
	WAV adaptor processing
	PCAP format processing

	Chapter 6. Surveillance Insight data schemas
	Party view
	Communication view
	Alert view
	Trade view

	Chapter 7. NLP libraries
	Emotion Detection library
	Concept Mapper library
	Classifier library

	Chapter 8. Inference engine
	Inference engine risk model
	Run the inference engine

	Chapter 9. Indexing and searching
	Chapter 10. Conduct Surveillance
	Raw data schema and ingestion
	Analysis pipeline
	Create an analysis pipeline

	Trend analysis
	Complaints dashboard
	Complaints data model
	Complaint features
	Solr data model for complaints

	Chapter 11. Health Check User Interface
	Health Check tabs
	Date ranges
	Health Check dashboards
	Ecomm dashboards
	Voice dashboards

	Chapter 12. Troubleshooting
	CDISI5060E No default Java found
	CDISI3059W You may be running a firewall which may prevent communication between the cluster hosts
	CDISI5070E The perl-XML-Simple software dependency is not installed

	Appendix A. Accessibility features
	Notices
	Index

